Abstract:
An organic light emitting display device including: a plurality of first wirings extending in a first direction; and a plurality of second wirings extending in a second direction that crosses the first direction, wherein at least one of the plurality of first wirings includes a first conductive layer and a second conductive layer that extends from an upper portion of the first conductive layer to the same layer as the first conductive layer or a lower layer than the first conductive layer.
Abstract:
An organic light-emitting display device includes a plurality of emission pixels aligned in columns and rows, each of the emission pixels including an emission device and a first pixel circuit coupled to the emission device, a dummy pixel including a second pixel circuit in each column of the emission pixels, and a repair line in each column, wherein a same data signal is provided to one of the emission pixels coupled to the repair line and to the dummy pixel coupled to the repair line, and wherein the emission pixels are configured to simultaneously emit light.
Abstract:
An organic light-emitting display device includes a plurality of emission pixels aligned in columns and rows, each of the emission pixels including an emission device and a first pixel circuit coupled to the emission device, a dummy pixel including a second pixel circuit in each column of the emission pixels, and a repair line in each column, wherein a same data signal is provided to one of the emission pixels coupled to the repair line and to the dummy pixel coupled to the repair line, and wherein the emission pixels are configured to simultaneously emit light.
Abstract:
An organic light emitting display device including: a plurality of first wirings extending in a first direction; and a plurality of second wirings extending in a second direction that crosses the first direction, wherein at least one of the plurality of first wirings includes a first conductive layer and a second conductive layer that extends from an upper portion of the first conductive layer to the same layer as the first conductive layer or a lower layer than the first conductive layer.
Abstract:
Provided is a method of manufacturing an organic light-emitting display apparatus which may reduce white angular dependency (WAD). The method includes forming a common layer on each of subpixel areas at the same time without discretion within one pixel area, the common layer not being formed on connection areas between pixel areas.
Abstract:
An organic light emitting diode (OLED) display device and a method of fabricating the same are provided. The OLED display device includes a substrate having a thin film transistor region and a capacitor region, a buffer layer disposed on the substrate, a gate insulating layer disposed on the substrate, a lower capacitor electrode disposed on the gate insulating layer in the capacitor region, an interlayer insulating layer disposed on the substrate, and an upper capacitor electrode disposed on the interlayer insulating layer and facing the lower capacitor electrode, wherein regions of each of the buffer layer, the gate insulating layer, the interlayer insulating layer, the lower capacitor electrode, and the upper capacitor electrode have surfaces in which protrusions having the same shape as grain boundaries of the semiconductor layer are formed. The resultant capacitor has an increased surface area, and therefore, an increased capacitance.
Abstract:
A light-scattering substrate which can be thinned and has improved thermal resistance, a method of manufacturing the same, an organic light-emitting display device including the same, and a method of manufacturing the organic light-emitting display device are disclosed. The light-scattering substrate includes a light-scattering layer composed of a plurality of metal nanoparticles which are attached to at least a surface of a substrate. The metal nanoparticles are formed by agglomeration of a metal on the substrate, and show a surface plasmon phenomenon.
Abstract:
An organic light-emitting display device includes a plurality of emission pixels aligned in columns and rows, each of the emission pixels including an emission device and a first pixel circuit coupled to the emission device, a dummy pixel including a second pixel circuit in each column of the emission pixels, and a repair line in each column, wherein a same data signal is provided to one of the emission pixels coupled to the repair line and to the dummy pixel coupled to the repair line, and wherein the emission pixels are configured to simultaneously emit light.
Abstract:
A light-scattering substrate which can be thinned and has improved thermal resistance, a method of manufacturing the same, an organic light-emitting display device including the same, and a method of manufacturing the organic light-emitting display device are disclosed. The light-scattering substrate includes a light-scattering layer composed of a plurality of metal nanoparticles which are attached to at least a surface of a substrate. The metal nanoparticles are formed by agglomeration of a metal on the substrate, and show a surface plasmon phenomenon.
Abstract:
Provided is a method of manufacturing an organic light-emitting display apparatus which may reduce white angular dependency (WAD). The method includes forming a common layer on each of subpixel areas at the same time without discretion within one pixel area, the common layer not being formed on connection areas between pixel areas.