Abstract:
A display apparatus includes: a first gate line extending in a second direction crossing a first direction; a row line extending in the first direction and electrically connected to the first gate line; a first data line spaced from the first gate line along the first direction and extending in the second direction; a second data line adjacent to the first data line and extending in the second direction; a first sub-pixel electrically connected to the first data line; and a second sub-pixel electrically connected to the second data line.
Abstract:
A method of forming a polycrystalline silicon layer includes forming a first amorphous silicon layer and forming a second amorphous silicon layer such that the first amorphous silicon layer and the second amorphous silicon layer have different film qualities from each other, and crystallizing the first amorphous silicon layer and the second amorphous silicon layer using a metal catalyst to form a first polycrystalline silicon layer and a second polycrystalline silicon layer. A thin film transistor includes the polycrystalline silicon layer formed by the method and an organic light emitting device includes the thin film transistor.
Abstract:
A display device including: a substrate; a first semiconductor layer disposed on the substrate; a second semiconductor layer disposed on the substrate and adjacent to the first semiconductor layer; a first insulation layer disposed on both the first semiconductor layer and the second semiconductor layer, the first insulation layer including a first opening forming a space between the first semiconductor layer and the second semiconductor layer; and a second insulation layer disposed on the first insulation layer and that fills the first opening.
Abstract:
An organic light emitting display device may include a substrate having a pixel region and a transparent region, a first capacitor disposed in the transparent region of the substrate, a semiconductor device disposed in the pixel region of the substrate, a second capacitor disposed on the semiconductor device, and an organic light emitting structure disposed on the second capacitor. The organic light emitting display device may have a sufficient capacitance for components including the semiconductor device and the organic light emitting structure without increasing an area of the pixel region while maintaining a transmittance of the organic light emitting display device.
Abstract:
A display apparatus includes a base substrate including a display region and a peripheral region that is a non-display region surrounding the display region, a plurality of data lines disposed in the display region on the base substrate and extending to the peripheral region, a bypass data line disposed in the display region and the peripheral region on the base substrate and electrically connected to at least one of the data lines, and a dummy pattern spaced apart from the bypass data line and disposed on a same layer as the bypass data line.
Abstract:
An organic light emitting display device includes a substrate a plurality of pixels disposed along a first direction and a second direction, the first direction and the second direction being substantially parallel to a top surface of the substrate and substantially perpendicular to each other, first wirings which is disposed on the substrate, extends in the first direction, and includes a first low voltage power line, and second wirings which is disposed on the substrate, extends in the second direction, and includes a second low voltage power line electrically connected to the first low voltage power line.
Abstract:
A thin film transistor (TFT) and an organic light emitting diode (OLED) display device. The TFT and the OLED display device include a substrate, a buffer layer disposed on the substrate, a semiconductor layer disposed on the buffer layer, a gate electrode insulated from the semiconductor layer, a gate insulating layer insulating the semiconductor layer from the gate electrode, and source and drain electrodes insulated from the gate electrode and partially connected to the semiconductor layer, wherein the semiconductor layer is formed from a polycrystalline silicon layer crystallized by a metal catalyst and the metal catalyst is removed by gettering using an etchant. In addition, the OLED display device includes an insulating layer disposed on the entire surface of the substrate, a first electrode disposed on the insulating layer and electrically connected to one of the source and drain electrodes, an organic layer, and a second electrode.
Abstract:
A deposition apparatus, and a canister for the deposition apparatus capable of maintaining a predetermined amount of source material contained in a reactive gas supplied to a deposition chamber when the source material is deposited on a substrate by atomic layer deposition includes a main body, a source storage configured to store a source material, a heater disposed outside the main body, and a first feed controller configured to control the source material supplied to the main body from the source storage.
Abstract:
A display device including: a substrate; a first semiconductor layer disposed on the substrate; a second semiconductor layer disposed on the substrate and adjacent to the first semiconductor layer; a first insulation layer disposed on both the first semiconductor layer and the second semiconductor layer, the first insulation layer including a first opening forming a space between the first semiconductor layer and the second semiconductor layer; and a second insulation layer disposed on the first insulation layer and that fills the first opening.