-
公开(公告)号:CN110850888A
公开(公告)日:2020-02-28
申请号:CN201911092553.3
申请日:2019-11-11
Applicant: 中国运载火箭技术研究院
IPC: G05D1/08
Abstract: 本申请实施例中提供了一种无尾布局飞行器横向控制方法、飞行器及存储介质。采用本申请实施例中的无尾布局飞行器横向控制方法通过判断飞行器在任务过程中的稳定性,通过增稳控制增强飞行器不稳定状态下的稳定性使飞行器达到稳定状态;其次进行阻尼控制和滚转控制,实现无尾布局飞行器的横向控制,解决了副翼偏航操纵耦合带来的飞行器不稳定性及不易操控性问题。
-
公开(公告)号:CN106484969B
公开(公告)日:2019-08-09
申请号:CN201610847855.7
申请日:2016-09-23
Applicant: 中国运载火箭技术研究院
IPC: G06F17/50
CPC classification number: Y02T90/50
Abstract: 一种大包线强机动飞行器动力学高精度仿真方法,属于飞行器动力学与控制领域。该方法首先建立了大包线强机动飞行器的刚体弹性耦合动力学高阶模型,建模过程仅考虑小幅线性振动假设,充分考虑了飞行器大包线强机动飞行过程中显著且快时变的气动力和力矩、发动机推力和力矩、重力、姿态强机动、气动舵快速运动与结构弹性振动之间的相互耦合影响,模型包含了全面的高阶非线性项,刚体运动与弹性振动之间的耦合影响项、姿态机动和气动舵快速运动对弹性振动和姿态的影响项。因此,该高阶模型能够真实反映大包线强机动飞行器真实状态,利用该高阶模型进行仿真分析,可以用于验证飞行器设计的合理性,验证结果较传统模型更准确可靠。
-
公开(公告)号:CN106484967B
公开(公告)日:2019-06-18
申请号:CN201610844701.2
申请日:2016-09-22
Applicant: 中国运载火箭技术研究院
IPC: G06F17/50
Abstract: 本发明涉及一种基于蒙特卡洛打靶的舵机功率计算方法,该方法针对飞行器单条或多条打靶仿真轨迹,得到飞行器舵机的功率随时间变化曲线,根据所述变化曲线获得飞行器舵机峰值功率、飞行器舵机最大峰值功率持续时间、飞行器舵机触地前峰值功率最短间隔时间、飞行器舵机峰值功率区间个数、飞行器舵机常值功率和飞行器舵机平均功率,该方法通过获得飞行器舵机功率相关指标,得到伺服系统在全任务周期中准确的功耗需求情况,为电源系统的设计提供可靠的设计输入。
-
公开(公告)号:CN106484969A
公开(公告)日:2017-03-08
申请号:CN201610847855.7
申请日:2016-09-23
Applicant: 中国运载火箭技术研究院
IPC: G06F17/50
CPC classification number: Y02T90/50 , G06F17/5009 , G06F17/5095
Abstract: 一种大包线强机动飞行器动力学高精度仿真方法,属于飞行器动力学与控制领域。该方法首先建立了大包线强机动飞行器的刚体弹性耦合动力学高阶模型,建模过程仅考虑小幅线性振动假设,充分考虑了飞行器大包线强机动飞行过程中显著且快时变的气动力和力矩、发动机推力和力矩、重力、姿态强机动、气动舵快速运动与结构弹性振动之间的相互耦合影响,模型包含了全面的高阶非线性项,刚体运动与弹性振动之间的耦合影响项、姿态机动和气动舵快速运动对弹性振动和姿态的影响项。因此,该高阶模型能够真实反映大包线强机动飞行器真实状态,利用该高阶模型进行仿真分析,可以用于验证飞行器设计的合理性,验证结果较传统模型更准确可靠。
-
公开(公告)号:CN104440170A
公开(公告)日:2015-03-25
申请号:CN201410683466.6
申请日:2014-11-24
Applicant: 首都航天机械公司 , 上海拓璞数控科技有限公司 , 中国运载火箭技术研究院
IPC: B23Q3/00
CPC classification number: B23Q3/00
Abstract: 该技术属于校准与夹紧装置领域,具体涉及一种基于压力转向机构的柔性筒段圆度校准与夹紧装置。包括圆周基座(1)以及支撑爪(2),圆周基座直径的大小是根据所需装夹工件的直径大小来进行设计的,各个夹紧支撑机构在筒段径向可以进行微调,适应各种直径大小圆度情况的筒段,对圆度定位有校准功能;夹紧力大小由伺服气缸控制,同时,利用双滑块机构实现压力转向,减小了机构的占用空间。
-
公开(公告)号:CN103587681A
公开(公告)日:2014-02-19
申请号:CN201310485560.6
申请日:2013-10-16
Applicant: 中国运载火箭技术研究院
Abstract: 抑制侧滑角信号常值偏差影响的高超声速飞行器控制方法,(1)利用惯组实时测量飞行器的偏航角速度ωy和滚转角速度ωx,并利用惯组、传感器获取滚转角γ和侧滑角(2)计算γ与滚转角指令γc的偏差信号,对偏差信号Δγ进行积分并进行限幅后得到滚转角积分信号;(3)将滚转角积分信号、ωy分别进行放大后生成控制指令反馈到飞行器的方向舵上;ωx进行放大后生成控制指令反馈到飞行器的副翼上;将Δγ进行放大后生成控制指令反馈至飞行器的方向舵/副翼;(4)将所有反馈至方向舵的控制指令相加作为方向舵的总控制指令,飞行器上的伺服系统控制方向舵跟踪总控制指令;将所有反馈之副翼的控制指令相加作为副翼的总控制指令,飞行器上的伺服系统控制副翼跟踪总控制指令。
-
公开(公告)号:CN112306075A
公开(公告)日:2021-02-02
申请号:CN202011126055.9
申请日:2020-10-20
Applicant: 中国运载火箭技术研究院
Abstract: 本发明一种高精度离轨反向迭代制导方法,包括以下步骤:(1)根据当前位置矢量rnow和标称再入速度矢量ve,计算得到待飞航程角、标称速度和标称再入速度方向矢量;(2)计算获得当前位置的积分地心距rint‑0和vint为当前位置的积分速度矢量;(3)迭代积分终点速度矢量;(4)计算获得增益速度矢量vgain=vR‑vnow;(5)设εv为速度阈值,若|vgain|>εv,则向外输出推力方向若|vgain|≤εv,则发动机关机,离轨制导结束。
-
公开(公告)号:CN111008118A
公开(公告)日:2020-04-14
申请号:CN201911217081.X
申请日:2019-12-03
Applicant: 中国运载火箭技术研究院
IPC: G06F11/34
Abstract: 本申请实施例中提供了一种伺服系统能耗评估系统及评估方法,仿真评估计算机根据运行飞行控制系统仿真模型生成舵机动态指令序列以及对应的气动载荷谱,加载主控设备根据气动载荷谱生成驱动指令发送至动态加载台,动态加载台根据驱动指令生成负载力控制信号发送至被测伺服系统实现动态加载技术,可模拟伺服系统飞行剖面下的带载工况,有效提高伺服系统工作特性评估的可信度,提高了伺服系统系统功耗评估的准确性。
-
公开(公告)号:CN105045273A
公开(公告)日:2015-11-11
申请号:CN201510494803.1
申请日:2015-08-12
Applicant: 中国运载火箭技术研究院
IPC: G05D1/08
Abstract: 本发明涉及一种双通道变质心飞行器,包括头部、中段和尾段,其特征在于:所述中段舱体内设有双通道变质心装置,所述双通道变质心装置包括有效载荷,所述有效载荷分为两组,其中一组有效载荷可沿本体坐标系X轴往复运动,另一组有效载荷可沿本体坐标系Z轴往复运动,实现飞行器质心在本体坐标系X轴和本体坐标系Z轴上的变化,本发明不需要空气舵和反作用姿态控制发动机,首次采用纯变质心控制的方式实现飞行器俯仰和滚转通道的控制,进而实现飞行器的大攻角、大倾侧角飞行,应用于通用再入飞行器等多种飞行器,具有广阔的应用前景。
-
公开(公告)号:CN103587681B
公开(公告)日:2015-10-21
申请号:CN201310485560.6
申请日:2013-10-16
Applicant: 中国运载火箭技术研究院
Abstract: 抑制侧滑角信号常值偏差影响的高超声速飞行器控制方法,(1)利用惯组实时测量飞行器的偏航角速度ωy和滚转角速度ωx,并利用惯组、传感器获取滚转角γ和侧滑角(2)计算γ与滚转角指令γc的偏差信号,对偏差信号Δγ进行积分并进行限幅后得到滚转角积分信号;(3)将滚转角积分信号、ωy分别进行放大后生成控制指令反馈到飞行器的方向舵上;ωx进行放大后生成控制指令反馈到飞行器的副翼上;将Δγ进行放大后生成控制指令反馈至飞行器的方向舵/副翼;(4)将所有反馈至方向舵的控制指令相加作为方向舵的总控制指令,飞行器上的伺服系统控制方向舵跟踪总控制指令;将所有反馈之副翼的控制指令相加作为副翼的总控制指令,飞行器上的伺服系统控制副翼跟踪总控制指令。
-
-
-
-
-
-
-
-
-