-
公开(公告)号:CN111017265A
公开(公告)日:2020-04-17
申请号:CN201911197686.7
申请日:2019-11-29
Applicant: 中国运载火箭技术研究院
Abstract: 一种运载器能量管理段FADS故障判断与控制方法,包括以下步骤:获取风干扰下大气数据测量数据以及惯性测量数据;分析所述大气数据测量数据和所述惯性测量数据的特性差异;根据飞行剖面高度、速度、航向、风速以及风向的散布规律建立所述大气数据测量数据的安全边界的数学表征;根据大气数据测量数据安全边界对大气测量数据的覆盖程度,判断大气测量信息是否在安全边界范围,当大气测量信息不在安全边界范围时判断大气数据传感系统故障;当大气数据传感系统故障时根据关键状态边界保护进行纵向控制或根据侧滑角边界保护进行滚转控制。在无动力返回过程中FADS故障或无大气数据测量信息的情况下,仍能对运载器实行安全可靠控制,保证了航天器安全着陆。
-
公开(公告)号:CN112416012B
公开(公告)日:2023-04-18
申请号:CN202011378884.6
申请日:2020-11-30
Applicant: 中国运载火箭技术研究院
Abstract: 本发明涉及一种火箭动力面对称运载器主动段制导控制方法,初始上升段,采用开环制导的方法,按照纵向仅跟踪标称的俯仰程序角原则,得到俯仰制导指令;横航向不进行制导机动;动力爬升段,采用闭环制导方法,按照跟踪高度和高度变化率以实现对飞行高度控制的原则,得到俯仰制导指令,横航向不进行制导机动;初始上升段和动力爬升段,运载器采用三通道姿态控制方法实施运载器姿态控制;初始上升段,根据运载器速度,对主发动机偏角分档,控制主发动机处于不同档位的偏角状态;动力爬升段,控制主发动机处于固定的偏角状态,规避主发动机喷流对运载器俯仰通道控制能力和稳定性的不利影响。本发明可有效降低气动舵铰链力矩。
-
公开(公告)号:CN112416012A
公开(公告)日:2021-02-26
申请号:CN202011378884.6
申请日:2020-11-30
Applicant: 中国运载火箭技术研究院
Abstract: 本发明涉及一种火箭动力面对称运载器主动段制导控制方法,初始上升段,采用开环制导的方法,按照纵向仅跟踪标称的俯仰程序角原则,得到俯仰制导指令;横航向不进行制导机动;动力爬升段,采用闭环制导方法,按照跟踪高度和高度变化率以实现对飞行高度控制的原则,得到俯仰制导指令,横航向不进行制导机动;初始上升段和动力爬升段,运载器采用三通道姿态控制方法实施运载器姿态控制;初始上升段,根据运载器速度,对主发动机偏角分档,控制主发动机处于不同档位的偏角状态;动力爬升段,控制主发动机处于固定的偏角状态,规避主发动机喷流对运载器俯仰通道控制能力和稳定性的不利影响。本发明可有效降低气动舵铰链力矩。
-
公开(公告)号:CN106484969B
公开(公告)日:2019-08-09
申请号:CN201610847855.7
申请日:2016-09-23
Applicant: 中国运载火箭技术研究院
IPC: G06F17/50
CPC classification number: Y02T90/50
Abstract: 一种大包线强机动飞行器动力学高精度仿真方法,属于飞行器动力学与控制领域。该方法首先建立了大包线强机动飞行器的刚体弹性耦合动力学高阶模型,建模过程仅考虑小幅线性振动假设,充分考虑了飞行器大包线强机动飞行过程中显著且快时变的气动力和力矩、发动机推力和力矩、重力、姿态强机动、气动舵快速运动与结构弹性振动之间的相互耦合影响,模型包含了全面的高阶非线性项,刚体运动与弹性振动之间的耦合影响项、姿态机动和气动舵快速运动对弹性振动和姿态的影响项。因此,该高阶模型能够真实反映大包线强机动飞行器真实状态,利用该高阶模型进行仿真分析,可以用于验证飞行器设计的合理性,验证结果较传统模型更准确可靠。
-
公开(公告)号:CN106484969A
公开(公告)日:2017-03-08
申请号:CN201610847855.7
申请日:2016-09-23
Applicant: 中国运载火箭技术研究院
IPC: G06F17/50
CPC classification number: Y02T90/50 , G06F17/5009 , G06F17/5095
Abstract: 一种大包线强机动飞行器动力学高精度仿真方法,属于飞行器动力学与控制领域。该方法首先建立了大包线强机动飞行器的刚体弹性耦合动力学高阶模型,建模过程仅考虑小幅线性振动假设,充分考虑了飞行器大包线强机动飞行过程中显著且快时变的气动力和力矩、发动机推力和力矩、重力、姿态强机动、气动舵快速运动与结构弹性振动之间的相互耦合影响,模型包含了全面的高阶非线性项,刚体运动与弹性振动之间的耦合影响项、姿态机动和气动舵快速运动对弹性振动和姿态的影响项。因此,该高阶模型能够真实反映大包线强机动飞行器真实状态,利用该高阶模型进行仿真分析,可以用于验证飞行器设计的合理性,验证结果较传统模型更准确可靠。
-
公开(公告)号:CN119668279A
公开(公告)日:2025-03-21
申请号:CN202411674684.3
申请日:2024-11-21
Applicant: 中国运载火箭技术研究院
IPC: G05D1/46 , G05D109/20
Abstract: 飞行器的轨迹设计方法、计算机程序产品及可读存储介质,涉及飞行器轨迹设计领域,基于飞行器针对风险区风险程度的测量数据,并根据自身动力学模型、飞行器气动性能、发动机能力等参数选取合适的航路点,并通过引入开关函数,根据飞行器是否位于风险区中动态调整目标函数,使得飞行器在低风险区按照燃料最优进行轨迹规划,而在高风险区则兼顾燃料与时间最优,以得到飞行器安全与航程能力的帕累托最优解,并通过序列凸优化方法实现快速轨迹规划。通过该方法,可以增强飞行器对于风险区域的适应能力,提高飞行器安全性,增加飞行任务目标实现概率,提升飞行器总体性能。
-
公开(公告)号:CN119249600A
公开(公告)日:2025-01-03
申请号:CN202411262940.8
申请日:2024-09-10
Applicant: 中国运载火箭技术研究院
IPC: G06F30/15 , G06F30/20 , G06F111/04 , G06F119/14
Abstract: 本发明提供一种组合动力吸气模态飞行包络设计及轨迹优化方法,所述优化方法,包括如下步骤:获取飞行轨迹设计输入条件;基于任务要求分析吸气动力发动机工作包线、飞行过载、动压飞行轨迹设计约束;解算满足个约束条件的上攻角剖面αup(t),得到飞行包络在高度‑速度剖面中的上边界;解算满足个约束条件的下攻角剖面αdown(t),得到飞行包络在高度‑速度剖面中的下边界;在高度‑速度剖面上下边界内确定飞行轨迹,即满足吸气动力飞行器轨迹多约束设计条件。
-
公开(公告)号:CN112389672B
公开(公告)日:2022-08-12
申请号:CN202011240181.7
申请日:2020-11-09
Applicant: 中国运载火箭技术研究院
Abstract: 本发明公开了一种基于性能最优的空天飞行器横航向操稳特性设计方法,步骤为:(1)、初步设计空天飞行器总体方案;(2)、建立空天飞行器垂直尾翼或V形尾翼和方向舵参数化模型;(3)、以垂直尾翼或V形尾翼和方向舵参数为优化变量,以最大侧滑角、最大舵偏角等为约束条件,建立空天飞行器总体性能优化模型;(4)、按照试验设计方法计算空天飞行器总体性能,并分析试验结果;(5)、根据试验结果确定最优的垂直尾翼或V形尾翼和方向舵参数;(6)、根据确定的垂直尾翼或V形尾翼和方向舵参数,计算横航向操稳特性。本发明可解决与横航向操稳特性相关的飞行器总体优化设计问题,提高空天飞行器总体性能。
-
公开(公告)号:CN111017265B
公开(公告)日:2021-05-04
申请号:CN201911197686.7
申请日:2019-11-29
Applicant: 中国运载火箭技术研究院
Abstract: 一种运载器能量管理段FADS故障判断与控制方法,包括以下步骤:获取风干扰下大气数据测量数据以及惯性测量数据;分析所述大气数据测量数据和所述惯性测量数据的特性差异;根据飞行剖面高度、速度、航向、风速以及风向的散布规律建立所述大气数据测量数据的安全边界的数学表征;根据大气数据测量数据安全边界对大气测量数据的覆盖程度,判断大气测量信息是否在安全边界范围,当大气测量信息不在安全边界范围时判断大气数据传感系统故障;当大气数据传感系统故障时根据关键状态边界保护进行纵向控制或根据侧滑角边界保护进行滚转控制。在无动力返回过程中FADS故障或无大气数据测量信息的情况下,仍能对运载器实行安全可靠控制,保证了航天器安全着陆。
-
公开(公告)号:CN112389672A
公开(公告)日:2021-02-23
申请号:CN202011240181.7
申请日:2020-11-09
Applicant: 中国运载火箭技术研究院
Abstract: 本发明公开了一种基于性能最优的空天飞行器横航向操稳特性设计方法,步骤为:(1)、初步设计空天飞行器总体方案;(2)、建立空天飞行器垂直尾翼或V形尾翼和方向舵参数化模型;(3)、以垂直尾翼或V形尾翼和方向舵参数为优化变量,以最大侧滑角、最大舵偏角等为约束条件,建立空天飞行器总体性能优化模型;(4)、按照试验设计方法计算空天飞行器总体性能,并分析试验结果;(5)、根据试验结果确定最优的垂直尾翼或V形尾翼和方向舵参数;(6)、根据确定的垂直尾翼或V形尾翼和方向舵参数,计算横航向操稳特性。本发明可解决与横航向操稳特性相关的飞行器总体优化设计问题,提高空天飞行器总体性能。
-
-
-
-
-
-
-
-
-