剂量-能量优化注氧隔离技术制备图形化绝缘体上的硅材料

    公开(公告)号:CN1206725C

    公开(公告)日:2005-06-15

    申请号:CN02160742.7

    申请日:2002-12-27

    Abstract: 本发明公开了一种制备高质量图形化SOI材料的方法,依次包括在半导体衬底上生成掩模、离子注入和高温退火,其特征在于,(1)离子注入前在硅片上形成掩模以在体硅区域完全阻挡离子的注入;(2)离子注入时的能量范围是50~200 keV,相应的剂量范围是2.0×1017~7.0×1017cm-2,注入剂量和能量之间的优化关系的公式是D(1017cm-2)=(0.035±0.005)×E(keV);(3)离子注入后的高温退火的温度为1200~1375℃,退火的时间为1~24个小时,退火的气氛为氩气或氮气与氧气的混合气体,其中氧气的体积含量为0.5%~20%。采用本发明提供的方法所制备的图形化SOI材料具有平整度高,缺陷密度低,过渡区小等优点,适合于制造集成体硅和SOI电路的系统芯片。

    场效应晶体管的制造方法
    273.
    发明授权

    公开(公告)号:CN1193414C

    公开(公告)日:2005-03-16

    申请号:CN03115423.9

    申请日:2003-02-14

    Abstract: 本发明涉及一种源漏在绝缘体上的场效应晶体管(MOSFET)的制造方法,属于微电子技术领域。本发明的特征在于采用选择外延法在常规SOIMOSTET器件的沟道下方埋氧中开一个窗口,使器件的沟道和硅衬底相连接,达到电耦合与热耦合的目的。具体而言,本发明的方法包括SOI衬底顶层硅和埋氧的刻蚀;在沟道区域选择外延单晶硅;化学机械抛光平坦化;常规CMOS工艺完成器件的制造等工艺步骤。采用本发明的方法制造的源漏在绝缘体上的晶体管,具有埋氧和体硅之间界面陡峭,缺陷少等优点,保证了器件的性能,在深亚微米集成电路的制造中有一定的应用前景。

    鳞状碳纳米管、制备方法和专用装置

    公开(公告)号:CN1460638A

    公开(公告)日:2003-12-10

    申请号:CN03129171.6

    申请日:2003-06-11

    Abstract: 本发明涉及鳞状碳纳米管、制备方法和专用装置。所述鳞状碳纳米管特征在于其外径15~50纳米,内径5~20纳米,长度10~100微米,鳞状实起长度100纳米,宽50纳米,由3~10层呈蜷曲状的多层石墨层片的实起。其制备包括中间层制备、过渡金属催化剂制备和碳纳米管生长三个过程,特征在于通过催化层的过渡金属膜,尤其是铁膜和中间层的晶格失配产生应力,使过渡金属膜破裂成纳米级颗粒。提供的专用装置包括真空系统、加热系统、配气系统、等离子体发生系统和薄膜生长系统,可一次完成包括样品清洗、预处理、中间层沉积、催化剂制备和碳纳米管的生长等工艺过程。制备的鳞状碳纳米管密度高、直径均匀、石墨化程度高,长度由反应时间控制。

    准绝缘体上的硅场效应晶体管及实现方法

    公开(公告)号:CN1431719A

    公开(公告)日:2003-07-23

    申请号:CN03115424.7

    申请日:2003-02-14

    Abstract: 本发明提出了一种准绝缘体上的硅(SOI)金属-氧化物-半导体场效应晶体管(MOSFET)器件的新结构及实现方法。其特征在于源漏区下方埋氧是连续的;而沟道区下方的埋氧是非连续的。采用注氧隔离技术来实现的工艺过程是:(1)在半导体衬底中注入低于最优剂量的离子;(2)在器件沟道区光刻生成掩模;(3)在源漏区第二次注入离子,使源漏区注入的总剂量达到最优剂量;高温退火后在源漏区下方形成连续埋氧,沟道区下方形成非连续的埋氧;(4)常规CMOS技术完成器件制作。由于沟道下方的埋氧是非连续的,沟道和硅衬底之间电耦合,从而克服了SOI MOSFET器件的浮体效应和自热效应二大固有缺点。

    一种提高碳纳米管薄膜的场致电子发射性能的方法

    公开(公告)号:CN1349241A

    公开(公告)日:2002-05-15

    申请号:CN01132287.X

    申请日:2001-11-23

    CPC classification number: B82Y10/00 H01J9/025

    Abstract: 本发明提供一种提高碳纳米管薄膜的场致电子发射性能的方法,属于场发射显示器领域。其特点是移植法制备的CNT薄膜阴极采用热处理工艺与等离子体积表面处理工艺;而直接生长法制备的CNT薄膜阴极仅采用等离子体表面处理工艺,等离子体表面处理的工艺参数是功率密度0.1-3W/cm3,处理时间5-60分钟,采用H2或含氢的化合物,经本发明提供的方法处理,可使CNT薄膜的电流密度提高3倍,阈值强度降低3倍多,电子发射点密度可提高3个数量级以上且均匀性明显提高,对移植法生长的薄膜阴极通过二种处理工艺有机结合,全面提高CNT薄膜阴极的场发射性能。

    三维堆叠的环栅晶体管及其制备方法

    公开(公告)号:CN111435641B

    公开(公告)日:2022-06-24

    申请号:CN201910027040.8

    申请日:2019-01-11

    Abstract: 本发明提供一种三维堆叠的环栅晶体管及其制备方法,方法包括:1)提供SOI衬底,其绝缘层中形成有凹槽;2)形成悬空并横跨于凹槽上且向上堆叠的半导体纳米线结构;3)对半导体纳米线结构进行圆化及减薄;4)于半导体纳米线表面形成全包围式的栅介质层及栅电极层;5)以栅电极层为掩膜,离子注入以形成源区及漏区;6)去除栅电极层包围以外的栅介质层;7)于源区及漏区形成源电极及漏电极。本发明采用栅电极层作为掩膜进行源区及漏区的自对准注入,可有效提高工艺稳定性以及注入精度。本发明在制备半导体纳米线时,不需要进行各项同性的湿法腐蚀,可有效避免内凹性空腔的产生。本发明可有效提高器件的集成度。

    环栅晶体管的制备方法
    279.
    发明授权

    公开(公告)号:CN111435678B

    公开(公告)日:2021-08-20

    申请号:CN201910027051.6

    申请日:2019-01-11

    Abstract: 本发明提供一种环栅晶体管的制备方法,方法包括:1)提供SOI衬底,其绝缘层中形成有凹槽;2)形成悬空并横跨于凹槽上的半导体纳米线结构;3)对半导体纳米线结构进行圆化及减薄;4)于沟道区表面形成注入阻挡层,所述注入阻挡层显露源区及漏区的制备区域;5)进行离子注入工艺以形成源区及漏区;6)于半导体纳米线表面形成全包围式的栅介质层及栅电极层,并图形化以形成栅极结构;7)形成源电极及漏电极。本发明的环栅晶体管采用后栅工艺制备,可有效提高栅极材料的选择范围,从而实现不同的器件性能要求。本发明在制备半导体纳米线时,不需要进行各项同性的湿法腐蚀,可有效避免内凹性空腔的产生。

    一种单光子源的制备方法及单光子源和集成光学器件

    公开(公告)号:CN111564534A

    公开(公告)日:2020-08-21

    申请号:CN202010264527.0

    申请日:2020-04-07

    Abstract: 本发明公开了一种单光子源的制备方法及单光子源和集成光学器件,本发明通过在SiC晶圆 面形成氧化硅保护层;在氧化硅保护层上制备掩膜;对SiC晶圆进行离子注入形成缺陷层;去除掩膜;将注入结构沿氧化硅保护层表面与另一带介质层的衬底键合;对键合结构退火;对剥离得到的表面SiC薄膜做后处理,再进行离子注入的方法步骤,将SiC薄膜经离子注入转移至衬底上,有利于避免注入损伤,有效克服了现有的SOI工艺制备的SiC薄膜因离子注入缺陷造成薄膜质量差、无法制备单光子源以及光损耗严重的问题,得到的单晶SiC薄膜和可控单光子源阵列具有高均匀性,高质量性,有利于制备高性能SiC基集成光学器件。

Patent Agency Ranking