摘要:
Bump components mounted on a circuit board on a supporting substrate is covered with a flexible separation wall. A pressure difference is provided between the inner and outer sides of the separation wall and thus the bump components are pressed against the circuit board. When heating is carried out in this state, the bump components and the circuit board are connected with a conductive adhesive or solder. During the heating, the circuit board is not deformed. Therefore, a bump-component mounted body can be manufactured with high yield.
摘要:
A method for forming routing conductors and solder bumps on a microelectronic substrate includes the steps of forming an under bump metallurgy layer on the substrate and forming a solder structure on the under bump metallurgy layer where the solder structure includes an elongate portion and an enlarged width portion. The portions of the under bump metallurgy layer not covered by the solder structure can be selectively removed using the solder structure as a mask. In addition, the solder is caused to flow from the elongate portion of the solder structure to the enlarged width solder portion thereby forming a raised solder bump. This step is preferably performed by heating the solder structure above its liquidus temperature allowing surface tension induced internal pressures to affect the flow. Various solder structures are also disclosed.
摘要:
A distributed constant filter capable of being connected to a wiring pattern and the like while simultaneously achieving miniaturization, stable performance and assurance of the reliability and a manufacturing method of the distributed constant filter are provided. In a triplate structure band-pass filter, in place of a high impedance pattern which is, in the prior art, formed on the same face as that of a low impedance pattern in an inner layer, conductor patterns extending in the thickness direction of a stacked substrate are formed. Each of the conductor patterns functions as a via pattern connecting the low impedance pattern in the inner layer and a wiring pattern in the surface layer and also functions as a high impedance line. As long as the filtering characteristic is the same, the line overall length (distance in a plane) of the conductor patterns can be made shorter than the conventional line overall length and the area occupied by the conductor patterns can be reduced. A change in the filtering characteristic which occurs when via patterns are separately provided does not occur.
摘要:
A method of forming an electrical circuit on a surface of a substrate includes providing a substrate having a surface with at least one groove formed therein, the groove having a bottom textured surface, and applying an electrically conductive material onto the bottom textured surface of the groove.
摘要:
A surface laminar circuit board includes an insulating layer, and a signal ground conductive layer disposed on an upper surface of the insulating layer. The conductive layer has a hole formed therein. A photosensitive dielectric layer is disposed on an upper surface of the signal ground conductive layer. The dielectric layer has a photo micro-via formed therein. A signal trace is disposed on the photosensitive dielectric layer, and is electrically coupled with the signal ground conductive layer by way of the photo micro-via. A conductive pad is provided, which has a majority thereof within an area defined by an outer periphery of the hole. The conductive pad is electrically coupled with the signal trace. A surface mounted component is mounted on the conductive pad.
摘要:
The present invention provides a process for the fabrication of a wiring board, which comprises the following steps: (a) forming a first wiring pattern on a first side of a self-supporting carrier metal foil so as to obtain a self-supporting wiring sheet comprising the carrier metal foil and the first wiring pattern; (b) superposing and pressing the first side of said self-supporting wiring sheet on and against an insulating substrate so that the first wiring pattern is_embedded in the insulating substrate and constitutes a surface with the insulating substrate; and (c) etching off desired portions of said carrier metal foil to form a second wiring pattern made of said carrier metal foil remaining on the surface constituted by the insulating substrate and the first wiring pattern. The present invention also provides the wiring board for electrical tests so fabricated.
摘要:
A high-frequency circuit board free from variations in transmission impedance and having the desired characteristics is produced. A surface of a resin substrate is activated to form a roughened surface, and a thin-wall pattern of an electrically conductive metal is formed directly on the roughened surface of the resin substrate.
摘要:
The present invention aims to connect metal films without forming any opening in a resin film. Against a first resin film 16 formed on a first metal film 12 are pressed bumps 21 on a second metal film 11 so that the bumps 21 are embedded into the first resin film 16. Either one of the first metal film 12 or the second metal film 11 or both is (are) patterned while the bumps 21 are in contact with the first metal film 12, and the first resin film 16 is heat-treated while the top of the first resin film is partially exposed to discharge the solvent or moisture from the exposed zone and cure the first resin film 16. After curing, the bumps 21 and the first metal film 12 may be ultrasonically bonded to each other. A second resin film and a third metal film may be further layered to form a multilayer structure.
摘要:
A bonding pad for an integrated circuit, having a conductive base layer. The conductive base layer has slots formed in it, where the slots extend completely through the conductive base layer. An insulating layer is disposed on top of the conductive base layer. The insulating layer protrudes into the slots of the conductive base layer. The insulating layer also includes a low k material. A conductive top layer is disposed on top of the insulating layer.
摘要:
A method of producing a wiring board having a plurality of wiring layers each being located on an electrical insulation layer, in which an electrical insulation layer is formed on a substrate using a resin material, and a conductor layer is formed on the surface of the electrical insulation layer by successive electroless plating and electroplating with copper, and is patterned to form a wiring layer, wherein, after the formation of the electrical insulation layer on the substrate, the electrical insulation layer is subjected to a plasma treatment and a subsequent ultraviolet treatment, and the electroless plating and the electroplating are then performed.