Abstract:
An organic light-emitting device comprising: a first electrode; a second electrode facing the first electrode; and an organic layer disposed between the first electrode and the second electrode, wherein the organic layer comprises an emission layer and a fluorescent compound, wherein the fluorescent compound comprises a 3n-π*-to-1π-π* energy transition from a 3n-π* excited state to a 1π-π* excited state, an energy level in a 1n-π* excited state of the fluorescent compound is greater than an energy level in the 1π-π* excited state of the fluorescent compound, the fluorescent compound emits a fluorescent light by radiative energy transition of an exciton in the 1π-π* excited state to a ground state, and the energy level in the 1n-π* excited state, the energy level in the 1π-π* excited state, and the energy level in the 3n-π* excited state are each independently calculated by using a time dependent-Density Functional Theory method.
Abstract:
The present invention relates to an n-heterocyclic carbene (NHC) type palladium catalyst and its preparation method as well as applications. Its preparation process is as below: select glyoxal as the raw material to synthesize glyoxaldiimine in the presence of Lewis acid or Bronsted acid, and then react with paraformaldehyde to get the NHC type ligand. Use palladium(II) to react with the compound containing carbon-nitrogen double bonds to get palladium(II) cyclic dimer; make the palladium cyclic dimer and the NHC type ligand coordinated to get the NHC type palladium catalyst. The palladium catalyst with a brand new structure according to the present invention, boasts high activity and multi-purpose. In addition, it shows excellent reaction activity in a lot of catalytic-coupling reactions including Suzuki-Miyaura, Heck, Buchwald-Hartwig, Kumada-Tamao-Corriu, Sonogashira, Negishi and α-ketone arylation reactions, and some reactions even can be carried out with the presence of an extremely low concentration of catalyst, exhibiting favorable industrialization prospect.
Abstract:
The present invention relates to a formula, comprising at least one solvent, and at least one functional composition of the general formula (I), wherein A is a functional structural element, B is a solvent-providing structural element, and k is an integer in the range of 1 to 20. The molecular weight of the functional composition is at least 550 g/mol, and the solvent-providing structural element B corresponds to the general formula ((L-I). Ar1, Ar2 JeWeUs, independently of each other, signify an aryl or heteroaryl group, which can be substituted with one or several discretionary residues R. Each X is, independently of one another, N or CR2, preferably CH. R1, R2, independently of one another, is hydrogen, a linear alkyl, alkoxy, or thioalkoxy group with 1 to 40 C atoms, or a branched or cyclic alkyl, alkoxy, or thioalkoxy group with 3 to 40 C atoms, or a silyl group, or a substituted keto group with 1 to 40 C atoms, an alkoxycarbonyl group with 2 to 40 C atoms, an aryloxycarbonyl group with 7 to 40 C atoms, a cyano group (—CN), a carbamoyl group (—C(═O)NH2), a haloformyl group (—C(═O)—X, wherein X signifies a halogen atom), a formyl group (—C(═O)—H), an isocyano group, an isocyanate group, a thiocyanate group or a thioisocyanate group, a hydroxy group, a nitro group, a CF3 group, Cl, Br, F, a cross-linkable group, or a substituted or non-substituted aromatic or heteroaromatic ring system with 5 to 60 ring atoms, or an aryloxy or heteroaryloxy group with 5 to 60 ring atoms, or a combination of these systems, wherein one or several of groups R1 and/or R2 can form a monocyclic or polycyclic, aliphatic or aromatic ring system with one another and/or with the ring to which group R1 is bound, and I is 0, 1, 2, 3 or 4, wherein the dashed linkage indicates the linkage to the functional structure element A. The present invention further relates to preferred compositions of the formula (I) and electronic devices containing said compositions.
Abstract:
The present application discloses a compound which is which activates Wnt/β-catenin signaling and thus treats or prevents diseases related to signal transduction, such as osteoporosis and osteoarthropathy; osteogenesis imperfecta, bone defects, bone fractures, periodontal disease, otosclerosis, wound healing, craniofacial defects, oncolytic bone disease, traumatic brain injuries related to the differentiation and development of the central nervous system, comprising Parkinson's disease, strokes, ischemic cerebral disease, epilepsy, Alzheimer's disease, depression, bipolar disorder, schizophrenia; eye diseases such as age related macular degeneration, diabetic macular edema or retinitis pigmentosa and diseases related to differentiation and growth of stem cell, comprising hair loss, hematopoiesis related diseases and tissue regeneration related diseases.
Abstract:
The present invention relates to novel ketone compounds, compositions comprising ketone compounds, and methods useful for treating and preventing cardiovascular diseases, dyslipidemias, dysproteinemias, and glucose metabolism disorders comprising administering a composition comprising a ketone compound. The compounds, compositions, and methods of the invention are also useful for treating and preventing Alzheimer's disease, Syndrome X, peroxisome proliferator activated receptor-related disorders, septicemia, thrombotic disorders, obesity, pancreatitis, hypertension, renal disease, cancer, inflammation, and impotence. In certain embodiments, the compounds, compositions, and methods of the invention are useful in combination therapy with other therapeutics, such as hypocholesterolemic and hypoglycemic agents.
Abstract:
The present invention discloses β-diketones, γ-diketones or γ-hydroxyketones or analogs thereof, that activate Wnt/β-catenin signaling and thus treat or prevent diseases related to signal transduction, such as osteoporosis and osteoarthropathy; osteogenesis imperfecta, bone defects, bone fractures, periodontal disease, otosclerosis, wound healing, craniofacial defects, oncolytic bone disease, traumatic brain injuries related to the differentiation and development of the central nervous system, comprising Parkinson's disease, strokes, ischemic cerebral disease, epilepsy, Alzheimer's disease, depression, bipolar disorder, schizophrenia; eye diseases such as age related macular degeneration, diabetic macular edema or retinitis pigmentosa and diseases related to differentiation and growth of stem cell, comprising hair loss, hematopoiesis related diseases and tissue regeneration related diseases.
Abstract:
Polymeric materials are recycled by transformation to useful chemicals by oxidization in the liquid phase using acetic acid as a solvent and a metal bromide catalyst.
Abstract:
Porous microcomposites have been prepared from perfluorinated ion-exchange polymer and metal oxides such as silica using the sol-gel process. Such microcomposites possess high surface area and exhibit extremely high catalytic activity.
Abstract:
An oxygen scavenging composition or system is provided comprising an oxygen scavenging material, a photoinitiator, and at least one catalyst effective in catalyzing an oxygen scavenging reaction, wherein the photoinitiator comprises a benzophenone derivative containing at least two benzophenone moieties. A film, a multi-phase composition, a multi-layer composition, a multi-layer film, an article comprising the oxygen scavenging composition, a method for preparing the oxygen scavenging composition, and a method for scavenging oxygen are also provided. Non-extractable benzophenone derivative photoinitiators and methods for preparing same are also provided.
Abstract:
A photostable cosmetic screening composition and process for protection of the human epidermis against UV rays of wavelengths between 280 and 380 nm, the composition having, in a cosmetically acceptable vehicle containing at least one fatty phase, 1 to 5% by weight of a dibenzoylmethane derivative and at least 1% by weight of an alkyl .beta.-.beta.-diphenylacrylate or .alpha.-cyano-.beta.-.beta.-diphenylacrylate of formula (I), the mole ratio of the compound of formula (I) to the dibenzoylmethane derivative being not less than 0.8.