Abstract:
A method for soldering an electronic component to a circuit board involves jetting liquefied solder. A laser beam melts a solid solder ball to produce a liquefied solder ball before the ball is jetted. The liquefied solder ball is jetted towards a through hole in the circuit board such that a portion of the liquefied solder ball flows into an annular gap between a pin and sides of the through hole. The pin is attached to the electronic component and passes through the through hole. As the liquefied solder ball is jetted towards the through hole, the laser beam is directed at the ball so as to keep it liquefied. How much of the solder ball remains outside the through hole after liquefied solder has flowed into the annular gap is determined. The filling degree of the annular gap is determined based on how much solder remains outside the hole.
Abstract:
Provided is a method of manufacturing a conductive metal thin film, the method including: a) heating and stirring a first solution containing a metal precursor, acid, amine, and a reducing agent to synthesize metal nano-particles on which formation of a surface oxide film is suppressed; b) dispersing the metal nano-particles synthesize in step a) in a non-aqueous solvent to prepare a conductive ink composition; c) applying the conductive ink composition onto an insulating substrate; and d) heat-treating the insulating substrate applied with the ink composition to form a conductive metal thin film. With the method of manufacturing a conductive metal thin film according to the present invention, large area conductive thin film may be manufactured as compared with the existing conductive ink composition based on noble metal nano-particles. In addition, the conductive metal thin film having excellent conductivity may be manufactured by suppressing a surface oxide film from being formed.
Abstract:
A method of forming a bonded product using metal nanoparticles is provided. More specifically, provided is a paste containing a flux component that can form a metal phase even in an inert atmosphere. The use of this paste allows a bonding material that can give a practically acceptable bonding strength to be provided in an inert atmosphere such as a nitrogen atmosphere at low temperatures without performing conventionally used pressurization. The paste is a bonding material configured to include: silver nanoparticles having an average primary particle diameter of 1 to 200 nm and coated with an organic material having 8 or less carbon atoms; a flux component having at least two carboxyl groups; and a dispersion medium. The use of this bonding material allows materials to be bonded even at a temperature of 300° C. or lower.
Abstract:
Described herein is an apparatus and method for providing an inerting gas during the application of soldering to a work piece. In one aspect, there is provided an apparatus for providing an inerting gas into an atmosphere above a solder reservoir during soldering of a work piece comprising: a base comprising an interior volume in fluid communication with an inerting gas source, a tube having an interior volume and comprising one or more perforations for the flow of inerting gas therethrough, and one or more support legs comprising an interior volume in fluid communication with the interior volume of the base and the interior volume of the tube, wherein the one or more support legs extend vertically upward from the base and elevate the tube above the surface of molten solder contained within a solder reservoir, and wherein the inerting gas travels through the base, upward through the one or more support legs, into the interior volume of the tube, and out through the one or more perforations in the tube.
Abstract:
Approaches for helping to decrease the amount of inactive gas necessary for reflow to interconnect connection terminals of a head slider and a suspension. Inactive gas is blown from a nozzle of a reflow apparatus toward interconnection joints of a head slider and a suspension. The head slider is bonded onto a gimbal tongue. The nozzle comprises a duct through which the inactive gas passes and a porous member fitted in an ejection outlet of the tube. Placing the porous member close to the head slider achieves effective reduction of oxygen concentration around solder balls.
Abstract:
Disclosed are a method of forming metal wiring and metal wiring formed using the same. The method includes printing wiring using an ink composition including metallic nanoparticles and dispersants maintaining dispersion of the metallic nanoparticles, performing a first firing process of firing the wiring under vacuum or in an inert atmosphere to suppress grain growth, and performing a second firing process of firing the wiring with the vacuum or inert atmosphere released, to accelerate grain growth. The method of forming metal wiring induces abnormal grain growth by rapidly removing dispersants, capable of inducing the growth of metallic nanoparticles, at a temperature at which the growth force of the metallic nanoparticles is high, in the process of firing the metallic nanoparticles. Accordingly, the metal wiring has a coarse-grained structure containing metallic particles with a large average particle size, and the electrical and mechanical characteristics thereof can be enhanced.
Abstract:
Embodiments of the present invention help to decrease the amount of inactive gas necessary for reflow to interconnect connection terminals of a head slider and a suspension. In an embodiment of the present invention, inactive gas is blown from a nozzle of a reflow apparatus toward interconnection joints of a head slider and a suspension. The head slider is bonded onto a gimbal tongue. The nozzle comprises a duct through which the inactive gas passes and a porous member fitted in an ejection outlet of the tube. Placing the porous member close to the head slider achieves effective reduction of oxygen concentration around solder balls.
Abstract:
The present invention is directed to a high frequency module used for wireless communication module, and comprises a first organic substrate (11) in which conductive pattern or patterns are formed on the principal surface thereof and one element body (7) or more are mounted, and a second organic substrate (12) in which a recessed portion (22) is formed in correspondence with the area where the element body or bodies (7) are mounted at the connecting surface to the first organic substrate (11). In the state where the second organic substrate (12) is connected to the first organic substrate (11), an element body accommodating portion (24) which seals the element body or bodies (7) is constituted by the recessed portion (22), wherein the element body accommodating portion (24) is adapted so that moisture resistance characteristic and oxidation resistance characteristic are maintained.
Abstract:
In a conductive material supply apparatus that can connect a small slider electrode and a wiring electrode on a flexure in a miniaturized magnetic head, electrically conductive material is supplied, with the aid of flow of nitrogen gas that is pressurized to a first pressure, into the interior of a nozzle assembly that defines an interior space having a nozzle orifice through which the electrically conductive material can pass. After the electrically conductive material has been supplied, the flow of the nitrogen gas is stopped, and the interior space is temporarily brought into communication with the exterior space thereby decreasing the pressure in the interior space. Thereafter, nitrogen gas maintained at a second pressure that is designed to be lower than the first pressure is supplied to the interior space, whereby the electrically conductive material is ejected to the exterior from the nozzle orifice by the effect of the second pressure.
Abstract:
The present invention is directed to a high frequency module used for wireless communication module, and comprises a first organic substrate (11) in which conductive pattern or patterns are formed on the principal surface thereof and one element body (7) or more are mounted, and a second organic substrate (12) in which a recessed portion (22) is formed in correspondence with the area where the element body or bodies (7) are mounted at the connecting surface to the first organic substrate (11). In the state where the second organic substrate (12) is connected to the first organic substrate (11), an element body accommodating portion (24) which seals the element body or bodies (7) is constituted by the recessed portion (22), wherein the element body accommodating portion (24) is adapted so that moisture resistance characteristic and oxidation resistance characteristic are maintained.