Abstract:
A method and a system for stabilizing the sight line of a chip component being carried on two discs, for stabilizing delivery of the chip component between the two discs, and improving and stabilizing the inspection accuracy in the visual check of the chip component. This is achieved by employing a mechanism for carrying the chip component while supporting it on the horizontal plane of the first rotary disc and then carrying the chip component while suction-holding it on the vertical plane of the second rotary disc. When the chip component is carried on the first rotary disc, the upper surface and one side face of the chip component are imaged by first and second cameras. When the chip component is carried on the second rotary disc, the lower surface and the other side face of the chip component are imaged by third and fourth cameras.
Abstract:
An image processing device may perform an analysis by utilizing target data representing a target image of a print target, so as to select, from among a plurality of types of print orders for printing the target image, one type of print order in which a print of the target image is presumed to be completed in the shortest time period. In each of the plurality of types of print orders, an area in the target image to be printed by the initial main scanning of the print head may be mutually different. The image processing device may create print data by utilizing the target data for causing a print performing unit to perform the print of the target image according to the selected one type of print order, and supply the print data to the print performing unit.
Abstract:
A method and a system for stabilizing the sight line of a chip component being carried on two discs, for stabilizing delivery of the chip component between the two discs, and improving and stabilizing the inspection accuracy in the visual check of the chip component. This is achieved by employing a mechanism for carrying the chip component while supporting it on the horizontal plane of the first rotary disc and then carrying the chip component while suction-holding it on the vertical plane of the second rotary disc. When the chip component is carried on the first rotary disc, the upper surface and one side face of the chip component are imaged by first and second cameras. When the chip component is carried on the second rotary disc, the lower surface and the other side face of the chip component are imaged by third and fourth cameras.
Abstract:
A solder bonding method and a solder bonding device are provided, in which solder is melted, and heating of electrode portions is performed by irradiating laser light to an inner side of a region where electrodes portions are provided, making the temperature difference between the electrode portions and the melted solder smaller to improve the wettability of the solder and increase bonding reliability. The solder bonding method and the solder bonding device perform bonding of the electrode portions that are formed on an object to be bonded by melting the solder. After supplying the solder onto the electrode portions before melting, a laser is irradiated to the solder and to the electrode portions in the periphery of the solder. The solder melts, and the electrode portions are heated. The wettability of the solder with respect to the electrode portions thus improves, and the reliability of an electrical connection between the electrode portions can be increased.
Abstract:
A method and a system for stabilizing the sight line of a chip component being carried on two discs, for stabilizing delivery of the chip component between the two discs, and improving and stabilizing the inspection accuracy in the visual check of the chip component. This is achieved by employing a mechanism for carrying the chip component while supporting it on the horizontal plane of the first rotary disc and then carrying the chip component while suction-holding it on the vertical plane of the second rotary disc. When the chip component is carried on the first rotary disc, the upper surface and one side face of the chip component are imaged by first and second cameras. When the chip component is carried on the second rotary disc, the lower surface and the other side face of the chip component are imaged by third and fourth cameras.
Abstract:
Provided are a solder ball bonding method and a solder ball bonding device for performing bonding of a plurality of electrode portions formed on objects to be bonded by melting solder balls. The solder balls are suctioned by using a plurality of suction nozzles that follow the electrode portions of the objects to be bonded, and conveyed onto the electrode portions. A laser irradiation portion that is positioned above the suction nozzles is then moved in a direction along which the suction nozzles are arranged, while the solder balls are irradiated with laser light passing through suction openings of the suction nozzles by using the laser irradiation portion. Accordingly, it is possible to melt the plurality of solder balls on the electrode portions by using only a single laser irradiation portion.
Abstract:
In a maintenance method of an inkjet printer comprising an air discharge device which discharges air accumulated in ink supply paths with pressurized air and an ink vacuum device which vacuums ink from an inkjet head, the pressurized air is in a high pressure mode when the air discharge device is used. The pressurized air is in a low pressure mode when the ink vacuum device is used. The driving time and the rotational speed of a drive motor which drives an air pump are controlled according to the capability and the ambient temperature of the air pump which generates the pressurized air.
Abstract:
The present invention provides a magnetic head construction, a connection method and a connecting device by which excellent electrical connection can be carried out between a core electrode and a substrate land face on a flexure in a magnetic head employing the piggy back system. In order to attain the object of interest, in the present invention, a fine adjustment actuator is arranged between a core and a flexure; a projection portion which is projected from the fine adjustment actuator when viewed from the flexure is provided in the core; a hole is provided in the position, on the flexure, corresponding to the projection portion; only the core is fixed by a support portion provided through the hole portion and a clamp pin without applying any load to the fine adjustment actuator; and while maintaining this fixing state, an electrode and a substrate land are bonded to each other with a wire.
Abstract:
The present invention provides a magnetic head construction, a connection method and a connecting device by which excellent electrical connection can be carried out between a core electrode and a substrate land face on a flexure in a magnetic head employing the piggy back system. In order to attain the object of interest, in the present invention, a fine adjustment actuator is arranged between a core and a flexure; a projection portion which is projected from the fine adjustment actuator when viewed from the flexure is provided in the core; a hole is provided in the position, on the flexure, corresponding to the projection portion; only the core is fixed by a support portion provided through the hole portion and a clamp pin without applying any load to the fine adjustment actuator; and while maintaining this fixing state, an electrode and a substrate land are bonded to each other with a wire.
Abstract:
When a system is activated, a host computer reads modules from an external nonvolatile memory, reconstructs control software for a machine in accordance with a system configuration information storage file, and transfers the control software to a volatile memory of each numerical control device. Various types of modules are stored collectively in the external nonvolatile memory without duplication. In updating the control software, it is necessary only that data be updated for the software modules in the external nonvolatile memory alone.