Abstract:
A module according to the present disclosure includes a circuit board, an electronic component on one of two principal surfaces of the circuit board, a connection conductor on the principal surface of the circuit board, and sealing resin on the principal surface of the circuit board. The electronic component and the connection conductor are covered with the sealing resin. The connection conductor includes a plate-shaped conductor and terminal sections. The plate-shaped conductor is disposed upright on the principal surface of the circuit board. The terminal sections extend from the plate-shaped conductor and away from the principal surface of the circuit board and are arranged side by side. Tip portions of the terminal sections are exposed at a surface of the sealing resin.
Abstract:
An electronic device is provided. The electronic device includes a hinge, a first housing having at least a portion coupled to a first side of the hinge and including a first substrate assembly, a second housing having at least a portion coupled to a second side of the hinge, including a second substrate assembly, and configured to be foldable and unfoldable, a flexible display supported on the first and second housing and configured to be foldable and unfoldable, an FPCB electrically connecting the first and second substrate assembly, a through hole formed in the first housing forming a path through which the at least one FPCB passes, a first sealing member disposed so as to compress a first side surface of the at least one FPCB disposed in the through hole, and a second sealing member presses the second side surface of the FPCB disposed in the through hole.
Abstract:
A shield enclosure includes a housing with a peripheral wall that defines a cavity, and a cover removably coupleable to the housing to at least partially seal the cavity. The cavity is sized to receive a printed circuit board therein. The housing shields the printed circuit board from electromagnetic interference and noise during noise figure testing of a radiofrequency component on the printed circuit board.
Abstract:
A manufacturing method of a mounting structure includes: a step of preparing a mounting member including a first circuit member and a plurality of second circuit members placed on the first circuit member; a disposing step of disposing a thermosetting sheet and a thermoplastic sheet on the mounting member, with the thermosetting sheet interposed between the thermoplastic sheet and the first circuit member; a first sealing step of pressing a stack of the thermosetting sheet and the thermoplastic sheet against the first circuit member, and heating the stack, to seal the second circuit members and to cure the thermosetting sheet into a cured layer; and a removal step of removing the thermoplastic sheet from the cured layer. At least one of the second circuit members is a hollow member having a space from the first circuit member, and in the first sealing step, the second circuit members are sealed so as to maintain the space.
Abstract:
A method for selective processing of a panel, the method may include receiving a panel that has a bottom side and a top side and comprises a first group of drilled holes and a second group of drilled holes; at least partially sealing a bottom of any through hole of the first group; filling, by a selective filing process, any drilled hole of the first group that has a top opening to provide at least partially filled drilled holes of the first group without filling the second group of drilled holes; and plugging, by a selective plugging process, a top of any drilled hole of the first group.
Abstract:
An enhanced substrate for use in printed circuit boards (PCBs) includes low-Dk-core glass fibers having low dielectric constant (Dk) cores. In some embodiments, the low-Dk-core glass fibers are filled with a low Dk fluid, such as a gas (e.g., air, nitrogen and/or a noble gas) or a liquid. After via holes are drilled or otherwise formed in the substrate, silane is applied to the ends of hollow glass fibers exposed in the via holes to seal the low Dk fluid within the cores of the hollow glass fibers. In some embodiments, the low-Dk-core glass fibers are filled with a solid (e.g., a low Dk resin). For example, a hollow glass fiber may be provided, and then filled with a low Dk resin in a liquid state. The low Dk resin within the hollow glass fiber is then cured to a solid state.
Abstract:
An enhanced substrate for use in printed circuit boards (PCBs) includes low-Dk-core glass fibers having low dielectric constant (Dk) cores. In some embodiments, the low-Dk-core glass fibers are filled with a low Dk fluid, such as a gas (e.g., air, nitrogen and/or a noble gas) or a liquid. After via holes are drilled or otherwise formed in the substrate, silane is applied to the ends of hollow glass fibers exposed in the via holes to seal the low Dk fluid within the cores of the hollow glass fibers. In some embodiments, the low-Dk-core glass fibers are filled with a solid (e.g., a low Dk resin). For example, a hollow glass fiber may be provided, and then filled with a low Dk resin in a liquid state. The low Dk resin within the hollow glass fiber is then cured to a solid state.
Abstract:
A method of forming a non-metallic coating on a metallic substrate involves the steps of positioning the metallic substrate in an electrolysis chamber and applying a sequence of voltage pulses of alternating polarity to electrically bias the substrate with respect to an electrode. Positive voltage pulses anodically bias the substrate with respect to the electrode and negative voltage pulses cathodically bias the substrate with respect to the electrode. The amplitude of the positive voltage pulses is potentiostatically controlled, wheras the amplitude of the negative voltage pulses is galvanostatically controlled.
Abstract:
Embodiments of the present disclosure are directed to a circuit board. The circuit board comprises: an aluminum-based substrate; an alumina layer formed on at least one surface of the aluminum-based substrate; and a circuit layer formed on the alumina layer. The alumina layer comprises alumina and an element selected from a group consisting of chromium, nickel, a rare earth metal, and a combination thereof.
Abstract:
An assembly and method for mounting an electronic package to a printed circuit board (PCB) in which a gasket is shaped to fit tightly around and under a perimeter edge of an electronic package.