摘要:
Provided is a method for growing a nanowire, including: providing a substrate with a base portion having a first surface and at least one support structure extending above or below the first surface; forming a dielectric coating on the at least one support structure; forming a photoresist coating over the substrate; forming a metal coating over at least a portion of the dielectric coating; removing a portion of the dielectric coating to expose a surface of the at least one support structure; removing a portion of the at least one support structure to form a nanowire growth surface; growing at least one nanowire on the nanowire growth surface of a corresponding one of the at least one support structure, wherein the nanowire comprises a root end attached to the growth surface and an opposing, free end extending from the root end; and elastically bending the at least one nanowire.
摘要:
A method for manufacturing a semiconductor device has a first step including a step of forming an oxide semiconductor film, a second step including a step of forming a gate insulating film over the oxide semiconductor film and a step of forming a gate electrode over the gate insulating film, a third step including a step of forming a nitride insulating film over the oxide semiconductor film and the gate electrode, a fourth step including a step of forming an oxide insulating film over the nitride insulating film, a fifth step including a step of forming an opening in the nitride insulating film and the oxide insulating film, and a sixth step including a step of forming source and drain electrodes over the oxide insulating film so as to cover the opening. In the third step, the nitride insulating film is formed through at least two steps: plasma treatment and deposition treatment. The two steps are each performed at a temperature higher than or equal to 150° C. and lower than 300° C.
摘要:
The present invention provides integrated nanostructures comprising a single-crystalline matrix of a material A containing aligned, single-crystalline nanowires of a material B, with well-defined crystallographic interfaces are disclosed. The nanocomposite is fabricated by utilizing metal nanodroplets in two subsequent catalytic steps: solid-liquid-vapor etching, followed by vapor-liquid-solid growth. The first etching step produces pores, or “negative nanowires” within a single-crystalline matrix, which share a unique crystallographic direction, and are therefore aligned with respect to one another. Further, since they are contained within a single, crystalline, matrix, their size and spacing can be controlled by their interacting strain fields, and the array is easily manipulated as a single entity—addressing a great challenge to the integration of freestanding nanowires into functional materials. In the second, growth, step, the same metal nanoparticles are used to fill the pores with single-crystalline nanowires, which similarly to the negative nanowires have unique growth directions, and well-defined sizes and spacings. The two parts of this composite behave synergistically, since this nanowire-filled matrix contains a dense array of well-defined crystallographic interfaces, in which both the matrix and nanowire materials convey functionality to the material. The material of either one of these components may be chosen from a vast library of any material able to form a eutectic alloy with the metal in question, including but not limited to every material thus far grown in nanowire form using the ubiquitous vapor-liquid-solid approach. This has profound implications for the fabrication of any material intended to contain a functional interface, since high interfacial areas and high quality interfacial structure should be expected. Technologies to which this simple approach could be applied include but are not limited to p-n junctions of solar cells, battery electrode arrays, multiferroic materials, and plasmonic materials.
摘要:
A method of forming Si or Ge-based and III-V based vertically integrated nanowires on a single substrate and the resulting device are provided. Embodiments include forming first trenches in a Si, Ge, III-V, or SixGe1-x substrate; forming a conformal SiN, SiOxCyNz layer over side and bottom surfaces of the first trenches; filling the first trenches with SiOx; forming a first mask over portions of the Si, Ge, III-V, or SixGe1-x substrate; removing exposed portions of the Si, Ge, III-V, or SixGe1-x substrate, forming second trenches; forming III-V, III-VxMy, or Si nanowires in the second trenches; removing the first mask and forming a second mask over the III-V, III-VxMy, or Si nanowires and intervening first trenches; removing the SiOx layer, forming third trenches; and removing the second mask.
摘要:
A method is provided for making smooth crystalline semiconductor thin-films and hole and electron transport films for solar cells and other electronic devices. Such semiconductor films have an average roughness of 3.4 nm thus allowing for effective deposition of additional semiconductor film layers such as perovskites for tandem solar cell structures which require extremely smooth surfaces for high quality device fabrication.
摘要:
Provided are electronic devices having quantum dots and methods of manufacturing the same. An electronic device includes a first nanorod, a quantum dot disposed on an upper surface of the first nanorod, and a second nanorod that covers a lateral surface of the first nanorod and the quantum dot. The first nanorod and the second nanorod are of opposite types.
摘要:
A method of growing high quality crystalline films on lattice-mismatched or amorphous layers is presented allowing semiconductor materials that would normally be subject to high stress and cracking to be employed allowing cost reductions and/or performance improvements in devices to be obtained. Catalysis of the growth of these films is based upon utilizing particular combinations of metals, materials, and structures to establish growth of the crystalline film from a predetermined location. The subsequent film growth occurring in one or two dimensions to cover a predetermined area of the amorphous or lattice-mismatched substrate. Accordingly the technique can be used to either cover a large area or provide tiles of crystalline material with or without crystalline film interconnections.
摘要:
An electrical cell-substrate impedance sensor (ECIS) includes a substrate; a catalyst layer formed on the substrate; and a plurality of nanowire electrodes array grown on the catalyst layer. The plurality of nanowire electrodes are configured to measure an electrical response of a biological cell.
摘要:
Semiconductor devices useful as light emitting diodes or power transistors are provided. The devices produced by depositing a Zn—O-based layer comprising nanostructures on a Si-based substrate, with or without a metal catalyst layer deposited therebetween. Furthermore, a pair of adjacent p-n junction forming layers is deposited on the ZnO-based layer, where one of the pair is an n-type epitaxial layer, and the other is a p-type epitaxial layer. One or more epitaxial layers may, optionally, be deposited between the ZnO-based layer and the pair of adjacent p-n junction forming layers.
摘要:
Various methods and systems are provided for production of nanowires or other nanomaterials. In one example, among others, a system includes a furnace configured to heat at least a portion of a tube, a material feeder coupled to a first end of the tube, and a vacuum pumping system coupled to a second end of the tube. The material feeder can include a source material manipulator that can position a source material in a fixture of a feeder arm and a linear manipulator that can extend the fixture into the tube, where it can be heated to produce a precursor vapor that can be used to form a nanomaterial on a substrate. In another example, a method includes extending a fixture holding source material into a furnace tube, drawing a precursor vapor produced from the source material across a substrate in the furnace tube, and forming nanomaterial on the substrate.