Abstract:
Disclosed herein is a memory cell including a memory element and a selector device. Data may be stored in both the memory element and selector device. The memory cell may be programmed by applying write pulses having different polarities and magnitudes. Different polarities of the write pulses may program different logic states into the selector device. Different magnitudes of the write pulses may program different logic states into the memory element. The memory cell may be read by read pulses all having the same polarity. The logic state of the memory cell may be detected by observing different threshold voltages when the read pulses are applied. The different threshold voltages may be responsive to the different polarities and magnitudes of the write pulses.
Abstract:
The present disclosure relates to phase change memory control. An apparatus includes a memory controller. The memory controller includes a word line (WL) control module and a bit line (BL) control module. The memory controller is to determine a WL address based, at least in part, on a received memory address. The memory controller is further to determine a BL address. The apparatus further includes a parameter selection module to select a value of a control parameter based, at least in part, on at least one of the WL address and/or the BL address.
Abstract:
Apparatuses and methods for accessing a memory cell are described. An example apparatus includes a first voltage circuit coupled to a node and is configured to provide a first voltage to the node and includes a second voltage circuit coupled to a node and is configured to provide a second voltage to the node. A memory cell is coupled to first and second access lines. A decoder circuit is coupled to the node and the first access line, and is configured to selectively couple the first access line to the node. The first voltage circuit is configured to provide the first voltage to the node before the second voltage circuit provides the second voltage to the node, and the second voltage circuit stops providing the second voltage before the node reaches the second voltage.
Abstract:
The present disclosure includes apparatuses and methods including drift acceleration in resistance variable memory. A number of embodiments include applying a programming signal to the resistance variable memory cell to program the cell to a target state, subsequently applying a pre-read signal to the resistance variable memory cell to accelerate a drift of a resistance of the programmed cell, and subsequently applying a read signal to the resistance variable memory cell.
Abstract:
Embodiments of the present disclosure describe read and write operations in phase change memory to reduce snapback disturb. In an embodiment, an apparatus includes read circuitry to apply a read voltage to a phase change memory (PCM) cell, setback circuitry to apply a setback pulse to the PCM cell in response to the application of the read voltage, wherein the setback pulse is a shorter set pulse performed for a first period of time that is shorter than a second period of time for a regular set pulse that is configured to transition the PCM cell from an amorphous state to a crystalline state, sense circuitry to sense, concurrently with application of the setback pulse, whether the PCM cell is in the amorphous state or the crystalline state. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the present disclosure describe read and write operations in phase change memory to reduce snapback disturb. In an embodiment, an apparatus includes read circuitry to apply a read voltage to a phase change memory (PCM) cell, setback circuitry to apply a setback pulse to the PCM cell in response to the application of the read voltage, wherein the setback pulse is a shorter set pulse performed for a first period of time that is shorter than a second period of time for a regular set pulse that is configured to transition the PCM cell from an amorphous state to a crystalline state, sense circuitry to sense, concurrently with application of the setback pulse, whether the PCM cell is in the amorphous state or the crystalline state. Other embodiments may be described and/or claimed.
Abstract:
Methods and systems to read a logic value stored in a magnetic tunnel junction (MTJ)-based memory cell based on a pulsed read current, with time between pulses to permit the MTJ to relax towards the magnetization orientation between the pulses, which may reduce build-up of momentum within the MTJ, and which may reduce and/or eliminate inadvertent re-alignment of a magnetization orientation. A sequence of symmetric and/or non-symmetric pulses may be applied to a wordline (WL) to cause a pre-charged bit line (BL) capacitance to discharge a pulsed read current through the MTJ, resulting in a corresponding sequence of voltage changes on the BL. The BL voltage changes may be integrated over the sequence of read current pulses, and a stored logic value may be determined based on the integrated voltage changes. The pre-charged BL capacitance may also serve as the voltage integrator.
Abstract:
A resistance change memory includes a memory cell array comprising memory cells including magnetic tunnel junction (MTJ) elements; a write and read circuit which performs a write operation and a read operation for the memory cells; a temperature sensor which outputs temperature information corresponding to a temperature of the memory cell array; and a memory controller which controls the write operation and the read operation by the write and read circuit in response to the temperature information, such that a first time period from a write command input to a pre-charge command input is variable according to the temperature information, while a second time period from an active command input to the pre-charge command input is fixed constant regardless of the temperature information.
Abstract:
The present disclosure includes apparatuses and methods including drift acceleration in resistance variable memory. A number of embodiments include applying a programming signal to the resistance variable memory cell to program the cell to a target state, subsequently applying a pre-read signal to the resistance variable memory cell to accelerate a drift of a resistance of the programmed cell, and subsequently applying a read signal to the resistance variable memory cell.
Abstract:
Disturb from the reset to the set state may be reduced by creating an amorphous phase that is substantially free of crystal nuclei when programming the reset state in a phase change memory. In some embodiments, this can be achieved by using a current or a voltage to program that exceeds the threshold voltage of the phase change memory element, but does not exceed a safe current voltage which would cause a disturb.