摘要:
An examination apparatus 1 for microorganisms for measuring an amount of microorganisms in a sample solution, the apparatus including stirring and mixing means 7 for stirring and mixing the sample solution into which a sample and a fluorescent staining reagent are added, in a sample container 5 formed of a material allowing light to pass through, an excitation light source 10 including a light source that irradiates an irradiation target surface of the sample container 5 with excitation light while the sample solution is being stirred by the stirring and mixing means 7, light receiving means 14 for detecting light and converting the light resulting from a fluorescent emission caused by excitation light from the excitation light source 10, into an electric signal, and control means 23 for detecting the number of emissions based on the electric signal from the light receiving means 14 and calculating the amount of the microorganisms contained in the sample in the sample container 5 based on the number of emissions.
摘要:
The invention relates to a method for determining the average radius of gyration (rg) of particles with a size of ≤1 μm in a suspension, and to a device for carrying out the method according to the invention. The method is based on the scattering of linearly polarised electromagnetic radiation on nanoparticles, which, suspended in a solution, are moved through a through-flow cell. The irradiation is carried out perpendicular to the movement direction, wherein the scattering intensity is measured via at least four detectors that are arranged in a defined plane at defined angles. Alternatively, at least one mirror can be used in the position of at least one of the detectors, which deflects the radiation to at least one detector. Based on the scattering intensities, both the average radius of gyration (rg) of the particles as well as the concentration thereof in the suspension can be determined.
摘要:
A detection device is formed in a body of semiconductor material having a first face, a second face, and a cavity. A detection area formed in the cavity, and a gas pump is integrated in the body and configured to force movement of gas towards the detection area. A detection system of an optical type or a detector of alpha particles is arranged at least in part in the detection area.
摘要:
An apparatus for particle characterisation, comprising: a sample cell for holding a sample; a light source configured to illuminate the sample with an illuminating beam and a plurality of light detectors, each light detector configured to receive scattered light resulting from the interaction between the illuminating beam and the sample along a respective detector path, wherein each respective detector path is at substantially the same angle to the illuminating beam.
摘要:
An optical micro-particle detector including a light source, a gas channel and a plurality of optical detectors is provided. The light source is configured to generate a light beam. The gas channel has at least one curved segment. The curved segment has a light entrance and a plurality of light exits. The light beam from the light source enters the gas channel through the light entrance. The plurality of optical detectors are optically coupled to the light exits, respectively.
摘要:
An observation system includes: a plurality of imaging sections to image one or more samples; a plurality of driving mechanisms that respectively move the imaging sections to change an imaging position for the samples; and a control circuit that controls operations of the driving mechanisms and the imaging sections to cause the imaging sections to image the samples, while causing the driving mechanisms to respectively move the imaging sections. The control circuit imposes different limitations on movement patterns of the imaging sections depending on a characteristic of the samples.
摘要:
A microparticle detection apparatus is provided. The microparticle detection apparatus includes a light emitting optical element, a converging optical system disposed in an advancing direction of light emitted from the optical element to converge the light, a particle path located in an advancing direction of the light having passed through the converging optical system so that the particle path intersects the light, a beam blocking unit to block direct light having passed through the particle path, a condensing lens disposed at the rear of the beam blocking unit, and a detector disposed at the rear of the condensing lens to detect light scattered by particles. A focal point of light formed by the optical element and the converging optical system may be located at the rear of the particle path. A focal point of light irradiated to the particles may be different from the introduction position of the particles.
摘要:
A particulate matter detector includes a light emitter configured to emit light, a first, a second and a third waveguide, a waveguide splitter, a detector, and a controller. The third waveguide is free of cladding. The first waveguide is coupled to the light emitter and guides emitted light toward the waveguide splitter. The first waveguide includes an interrogation region formed by a cladding-free surface of the first waveguide. During a measurement phase, a first intensity of the light in the first waveguide is set for determining a change in the intensity of the light detected by the detector. An indication of an opacity of the surface of the first waveguide with accumulated particulate matter is output. During a cleaning phase, a second intensity of the light in the first waveguide is set for directing the accumulated particulate matter from the interrogation region to the third waveguide via optical forces.
摘要:
Methods, apparatuses, and computer program products are provided where fluid, such as a blood sample, is entered into a microfluidic channel in a microchip where the microfluidic channel possesses a micro/nanopillar array for sorting molecules by size. When the fluid passes through the micro/nanopillar array it is separated into particles of interest or particles not of interest or both. When particles of interest are lit by a light source via a first waveguide in the microchip connecting the light source to the microfluidic channel, then lighted particles of interest can be detected by an optical detector via a second waveguide in the microchip connecting the optical detector to the microfluidic channel. The information from the optical detector can be analyzed further by connecting the microchip to a mobile computing device with its own processing abilities or abilities via the internet or cloud.
摘要:
The present description provides, in some embodiments, an apparatus for mixing a fluid in a circuit having an inlet channel defining a flow path for a fluid including particulate matter, a first reagent channel in fluid communication with the inlet channel and defining a first reagent flow path for a first reagent, the inlet channel and first reagent channel configured to shear the fluid entering the first reagent channel from the inlet channel at a first junction, a shearing channel in fluid communication with the inlet channel and first reagent channel at the first junction, and a diffusion channel in fluid communication with the shearing channel at a second junction, the sheared fluid collectable into the diffusion channel such that the fluid is compressed at least in part by the first reagent to have a thickness close to a diameter of the particulate matter in the fluid.