Abstract:
The invention is a high-throughput voltage screening crystallographic device and methodology that uses multiple micro wells and electric circuits capable of assaying different crystallization condition for the same or different proteins of interest at the same of different voltages under a humidity and temperature controlled environment. The protein is solubilized in a lipid matrix similar to the lipid composition of the protein in the native environment to ensure stability of the protein during crystallization. The invention provides a system and method where the protein is transferred to a lipid matrix that holds a resting membrane potential, which reduces the degree of conformational freedom of the protein. The invention overcomes the majority of the difficulties associated with vapor diffusion techniques and essentially reconstitutes the protein in its native lipid environment under “cuasi” physiological conditions.
Abstract:
An apparatus and method is provided for coating a surface of a material with a film of porous coordination polymer. A first substrate having a first surface to be coated is positioned in a processing chamber such that the first surface is placed in a substantially opposing relationship to a second surface. In some embodiments, the second surface is provided by a wall of the processing chamber, and in other embodiments the second surface is provided by a second substrate to be coated. The first substrate is held such that a gap exists between the first and second surfaces, and the gap is filled with at least one reaction mixture comprising reagents sufficient to form the crystalline film on at least the first surface. A thin gap (e.g., having a thickness less than 2 mm) between the first and second surfaces is effective for producing a high quality film having a thickness less than 100 μm. Confining the volume of the reaction mixture to a thin layer adjacent the substrate surface significantly reduces problems with sedimentation and concentration control. In some embodiments, the size, shape, or average thickness of the gap is adjusted during formation of the film in response to feedback from at least one film growth monitor.
Abstract:
An injector apparatus and methods for use, where the injector apparatus comprises: (a) hydraulic stage having first and second ends and including a housing defining a cavity, a primary plunger disposed in the cavity and a secondary plunger, (b) a pressurization system coupled to the hydraulic stage's first end, where the primary plunger is in fluid communication with the pressurization system and is in mechanical communication with the secondary plunger, (c) a reservoir bore defined in the hydraulic stage housing and configured to receive the primary plunger's second end, where the secondary plunger is disposed within the reservoir bore and (d) a nozzle assembly including a housing, a gas tube and a nozzle capillary, where the nozzle capillary is partially disposed in and is substantially coaxial with the gas tube, where the nozzle capillary's first end is in fluid communication with the reservoir bore's second end.
Abstract:
Graphoepitaxy directed self-assembly methods generally include grafting a conformal layer of a polymer brush onto a topographic substrate. A planarization material, which functions as a sacrificial material is coated onto the topographic substrate. The planarization material is etched back to a top surface of the topographic substrate, wherein the etch back removes the polymer brush from the top surfaces of the topographic substrate. The remaining portion of the polymer brush is protected by the remaining planarization material below the top surface of the topographic substrate, which can be removed with a solvent to provide the topographic substrate with a conformal polymer brush below the top surface of the topographic substrate. The substrate is then coated with a block copolymer and annealed to direct self-assembly of the block copolymer. The methods mitigate island and/or hole defect formation.
Abstract:
The present invention provides microfabricated substrates and methods of conducting reactions within these substrates. The reactions occur in plugs transported in the flow of a carrier-fluid.
Abstract:
Provided are a protein crystal device and method for crystallizing protein capable of generating protein crystal without imparting a heat effect, a protein crystal-cutting device and method for cutting protein crystal capable of cutting protein crystal without imparting a heat effect on protein crystal, and bubble-jetting member and protein-adsorbing-bubble-jetting member used in said device. A bubble-jetting member is used in a protein crystal device to jet bubbles into a protein solution to thereby allow protein crystals to be obtained, the bubble-jetting member comprising: a core formed of a conductive material; a shell part formed of an insulating material, including an extended section extending from the tip of the core, and in which at least a portion closely adheres to the core to cover the core; and a gap having a bubble-jetting port, the gap being formed between the extended section and the tip of the core.
Abstract:
A method for crystallizing a substance dissolved in a solvent, including the following steps: introducing a solvent volume containing the substance into a chamber having a preset temperature, humidity, and gas composition, adding a predetermined volume of a precipitant to the solvent volume containing the substance, allowing the solvent to evaporate while simultaneously observing structural changes in the solvent volume containing the substance and the precipitant by means of dynamic light scattering, detecting weight changes and determining the molarities, making an association with the location in the phase diagram on the basis of the DLS measurement and the results of the molarity determination, allowing a predetermined number of crystal nuclei to form by adding solvent or adding precipitant, putting the solvent volume containing the substance and the precipitant into a metastable state by adding solvent and/or protein solution or by allowing the concentration of the dissolved substance to decrease by allowing nucleation cores to form, maintaining the metastable state by adding a predetermined amount of the substance to the solvent volume containing the substance and the precipitant or allowing the solvent to evaporate until at least one crystal of a predetermined size is formed.
Abstract:
An injector apparatus and methods for use, where the injector apparatus comprises: (a) hydraulic stage having first and second ends and including a housing defining a cavity, a primary plunger disposed in the cavity and a secondary plunger, (b) a pressurization system coupled to the hydraulic stage's first end, where the primary plunger is in fluid communication with the pressurization system and is in mechanical communication with the secondary plunger, (c) a reservoir bore defined in the hydraulic stage housing and configured to receive the primary plunger's second end, where the secondary plunger is disposed within the reservoir bore and (d) a nozzle assembly including a housing, a gas tube and a nozzle capillary, where the nozzle capillary is partially disposed in and is substantially coaxial with the gas tube, where the nozzle capillary's first end is in fluid communication with the reservoir bore's second end.
Abstract:
The present invention provides polypeptide domains of C. difficile toxin B (B1, B2, B3, B4) and complexes between the polypeptides and antibodies that bind specifically for the polypeptide. Methods of using the polypeptides to generate antibodies are also provided.