Abstract:
A film-forming resin composition for use in encapsulating large-diameter thin-film wafers includes (A) a silicone resin having a weight-average molecular weight of 3,000 to 500,000 and containing repeating units of formula (1) wherein R1 to R4 are monovalent hydrocarbon groups, but R3 and R4 are not both methyl, m and n are integers of 0 to 300, R5 to R8 are divalent hydrocarbon groups, a and b are positive numbers such that a+b=1, and X is a specific divalent organic moiety; (B) a phenolic compound of formula (7) wherein Y is a carbon atom or a tetravalent hydrocarbon group of 2 to 20 carbon atoms, and R13 to R16 are monovalent hydrocarbon groups or hydrogen atoms; and (C) a filler.
Abstract:
An object of the present invention is to provide a curable composition that can be cured satisfactorily and can form a cured product having a high glass transition temperature as maintained and having high mechanical strength. A curable composition includes a siloxane (A), a cycloaliphatic epoxide (B), and a curing agent (C). The siloxane (A) contains at least two epoxy groups per molecule. The cycloaliphatic epoxide (B) in the curable composition is preferably a compound represented by Formula (I): wherein X is selected from a single bond and a linkage group.
Abstract:
A film-forming resin composition for use in encapsulating large-diameter thin-film wafers includes (A) a silicone resin having a weight-average molecular weight of 3,000 to 500,000 and containing repeating units of formula (1) wherein R1 to R4 are monovalent hydrocarbon groups, but R3 and R4 are not both methyl, m and n are integers of 0 to 300, R5 to R8 are divalent hydrocarbon groups, a and b are positive numbers such that a+b=1, and X is a specific divalent organic moiety; (B) a phenolic compound of formula (7) wherein Y is a carbon atom or a tetravalent hydrocarbon group of 2 to 20 carbon atoms, and R13 to R16 are monovalent hydrocarbon groups or hydrogen atoms; and (C) a filler.
Abstract:
A silicone-modified epoxy resin composition that offers a cured product excellent in low permeability to gas, mechanical strength, and heat resistance and transparency and further offers an optical semiconductor sealing material excellent in heat cycle resistance, and a cured epoxy resin product obtained by curing the composition. The epoxy resin composition comprises the following components (A) to (C): (A) a silicone-modified epoxy resin having a cyclic siloxane structure, (B) a silicone-modified epoxy resin having a branched siloxane structure, and (C) an epoxy resin curing agent containing a polyvalent carboxylic acid having a tricyclodecane structure and a carboxylic anhydride compound.
Abstract:
A multi-layer or single layer antifouling coating system. A multi-layer coating system comprises (a) a base coating for coating a substrate, and (b) an antifouling coating composition adapted to be disposed over the base coating, the antifouling coating composition comprising a functionalized polymer, and a curable polyether-containing silane of the Formula (1): (R1O)a(R1)(3-a)Si—R2—(Si(R1)2O)p—Si(R1)2—R2—O—(CH2—CHR1—O)q—R1 (1) where a is 1-3; R1 is H or alkyl radical from C1-C10; R2 is alkylene from C2-C10; p is 1-100; and q is 1-50. The base coating composition can comprise an epoxy modified adhesion promoter. Additionally, the anti-fouling coating composition can comprise an acetoxy, alkoxy, and/or ketoxime functional adhesion promoter.
Abstract:
Provided are an alkoxysilylated epoxy compound, a composite of which exhibits good heat resistance properties, particularly low CTE and increased glass transition temperature, and a cured product thereof exhibits good flame retardancy and composition of which does not require additional silane coupling agent, a method for preparing the same and a composition and a cured product including the same. An alkoxysilylated epoxy compound including at least one alkoxysilyl group and at least two epoxy groups, a method for preparing the same by epoxide ring-opening reaction of starting material and alkoxysilylation, an epoxy composition including the epoxy compound, and a cured product and a use of the composition are provided. Since chemical bonds may be formed between alkoxysilyl group and filler and between alkoxysilyl groups, chemical bonding efficiency of the composite may be improved. Thus, the composite exhibits good heat resistance properties and the cured product exhibits good flame retardancy.
Abstract:
Disclosed is a liquid crystal orientating agent which contains a liquid crystal orientating polyorganosiloxane obtained by reacting a specified reactive polyorganosiloxane typified by the hydrolysis condensate of 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane and a reactive compound which includes a specified compound typified by stearic acid. The liquid crystal orientating agent of this invention can form liquid crystal orientating films which have excellent liquid crystal orientating properties, a high level of heat resistance and light resistance, exhibit little reduction of voltage retention even in high temperature environments and when irradiated with light of high intensity, and excellent residual image characteristics, and it also has excellent storage stability.
Abstract:
A multi-layer or single layer antifouling coating system. A multi-layer coating system comprises (a) a base coating for coating a substrate, and (b) an antifouling coating composition adapted to be disposed over the base coating, the antifouling coating composition comprising a hydroxyl terminated polydimethylsiloxane, a curable polyether-containing silane of the Formula (1): (R1O)a(R1)(3-a)Si—R2—(Si(R1)2O)p—Si(R1)2—R2—O—(CH2—CHR1—O)q—R1 (1) where a is 1-3; R1 is H or alkyl radical from C1-C10; R2 is alkylene from C2-C10; p is 1-100; and q is 1-50. The base coating composition can comprise an epoxy modified adhesion promoter. A single layer coating composition comprises a compound of Formula (4): (R1O)a(R1)3-a—Si-M-(Si(R1)2O)r—(Si(R1)(O1/2)(O))t—(Si(X)(O1/2)(O))v—Si(R1)2-M-Si(OR1)a(R1)3-a (4) where R1 is H or an alkyl radical M is R2 or oxygen; r is 0-1000; t is 1 to 20; v is 0 to 20; X is —R2—(N(R1)1-b(Y)b—R2)c—N(R1)2-b(Y)b; b is 0-2; c is 0-5; Y is R1 or an organic radical with an epoxide at one terminal; and R2 is an alkylene from C2-C10, with the proviso that at least one Y is an organic radical with an epoxide at one terminal. The respective compositions are such that the antifouling coating composition sufficiently adheres to the base coating composition without the need for a tie coat layer.
Abstract:
A silicone-modified epoxy resin which yields a cured product having low gas permeability and excellent strength; a composition of the silicone-modified epoxy resin; and an epoxy resin cured product obtainable by curing the composition, are provided.An epoxy resin represented by the following Formula (1): wherein R1 represents a hydrocarbon group having 1 to 6 carbon atoms; X represents an organic group having a norbornane epoxy structure, or a hydrocarbon group having 1 to 6 carbon atoms; n represents an integer from 1 to 3; plural R1s and plural Xs present in the formula may be respectively identical or different; and two or more of plural Xs represent an organic group having a norbornane epoxy structure.
Abstract:
The purpose of the present invention is to provide a silicone-modified epoxy resin which produces a cured product having excellent low gas permeability and strength; a composition of the resin; and an epoxy resin cured product obtainable by curing the composition.Disclosed is an epoxy resin represented by the following Formula (1): wherein R1 independently represents a monovalent aromatic hydrocarbon group having 6 to 12 carbon atoms; R2 independently represents a monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms; R3 independently represents a monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 12 carbon atoms; R4 represents an oxygen atom or a divalent hydrocarbon group having an aliphatic cyclic structure; R5 represents silicone chain having a norbornane epoxy structure at either end; and X represents an organic group having a norbornane epoxy group.