Abstract:
The present invention is directed to novel flame retardant monomers and polymers, wherein the flame retardant properties of the polymers are provided by functionality in pendant groups attached to a polymer backbone (as opposed to the polymer backbone itself possessing flame retardant properties. The present invention is also directed to methods of making such polymers and monomers, and articles of manufacture incorporating such monomers and polymers.
Abstract:
The present invention provides a process for preparing a 1,1-disubstituted ethylene derivative of the formula ##STR1## which comprises reacting lead with a carbinol derivative of the formula ##STR2## wherein R.sup.1, R.sup.2, R.sup.3, X, Y, m and n are defined in the specification. The reaction is conducted more advantageously in the presence of a metal having higher ionization tendency than lead.
Abstract:
Aromatic alkenyl compounds, for example, eugenol and safrole, are isomerized, for example to isoeugenol and isosafrole, by contact with a ruthenium or osmium catalyst.
Abstract:
3-Fluorosalicylaldehyde may be prepared in a more economical manner by alkylating o-fluorophenol with an allyl halide such as allyl chloride, thereafter rearranging the resultant o-fluorophenyl allyl ether to form allyl-o-fluorophenol. The latter compound is then isomerized to form propenyl-o-fluorophenol. Thereafter this compound is subjected to ozonolysis at a subambient temperature to form the desired compound, namely, 3-fluorosalicylaldehyde.
Abstract:
Alkaline earth-nickel phosphates having from about 61% to about 70% phosphate are superior catalysts for oxydehydrogenating alkyl aromatic compounds including nitrogen heterocyclics which have at least one C.sub.2 -C.sub.6 alkyl side chain to form derivatives having side chain unsaturation. The alkyl aromatic compound can have 1-2 rings. The process is carried out at 450.degree.-650.degree.C. and a space velocity of 55-2500.
Abstract:
Disclosed are a spherical titanium silicalite catalyst and a preparation method therefor. The spherical titanium silicalite catalyst has the following composition: xTiO2·(1−x)SiO2/yMPO4, wherein x is equal to 0.0005-0.04, y is equal to 0.005-0.20, M is a metal element selected from alkaline earth metals, transition metals or combinations of two or more thereof. The spherical titanium silicalite catalyst is prepared by the following method: (i) providing titanium silicalite raw powder with the composition of xTiO2·(1−x)SiO2, wherein x is equal to 0.0005-0.04, and y is equal to 0.005-0.20; (ii) mixing silica sol, an organic template agent and phosphate in proportion to obtain an adhesive; and (iii) mixing the adhesive with the titanium silicalite raw powder, and carrying out spray-drying molding and firing to obtain the titanium silicalite catalyst.
Abstract:
Disclosed are novel processes for making cyclohexanone compositions, from a mixture comprising phenol, cyclohexanone, and cyclohexylbenzene. The process includes hydrogenation of a feed stream comprising phenol, cyclohexanone, and cyclohexylbenzene. The feed stream may be subjected to one or more pre-hydrogenation treatments, such as passing through one or more sorbents, addition of basic chemical agents, and/or addition of water, so as to improve catalyst activity, minimize undesired side reactions, and/or remove catalyst poisons from the feed stream. The feed stream may be provided to a hydrogenation reaction zone in the vapor phase, with periodic alterations to hydrogenation reaction conditions such that the feed is provided in mixed liquid and vapor phase in order to carry out liquid washing of a hydrogenation catalyst bed within the hydrogenation reaction zone.