Abstract:
Disclosed are compositions comprising HCFC-243db, HCFO-1233xf, HCFC-244db and/or HFO-1234yf and at least one additional compound. For the composition comprising 1234yf, the additional compound is selected from the group consisting of HFO-1234ze, HFO-1243zf, HCFC-243db, HCFC-244db, HFC-245cb, HFC-245fa, HCFO-1233xf, HCFO-1233zd, HCFC-253fb, HCFC-234ab, HCFC-243fa, ethylene, HFC-23, CFC-13, HFC-143a, HFC-152a, HFC-236fa, HCO-1130, HCO-1130a, HFO-1336, HCFC-133a, HCFC-254fb, CHF=CHCl, HFO-1141, HCFO-1242zf, HCFO-1223xd, HCFC-233ab, HCFC-226ba, and HFC-227ca. Compositions comprising HCFC-243db, HCFO-1233xf, and/or HCFC-244db are useful in processes to make HFO-1234yf. Compositions comprising HFO-1234yf are useful, among other uses, as heat transfer compositions for use in refrigeration, air-conditioning and heat pump systems.
Abstract:
Heterogenous azeotrope or azeotrope-like compositions comprising 2-chloro-3,3,3-trifluoropropene (HFCO-1233xf) and water which may include from about 0.09 wt. % to about 92.69 wt. % 2-chloro-3,3,3-trifluoropropene (HFCO-1233xf) and from about 7.31 wt. % to about 99.91 wt. % water and having a boiling point between about 12.0° C. and about 13.6° C. at a pressure of between about 12.5 psia and about 16.5 psia. The azeotrope or azeotrope-like compositions may be used to separate impurities, including water, from 2-chloro-3,3,3-trifluoropropene (HFCO-1233xf).
Abstract:
Disclosed are compositions comprising HCFC-243db, HCFO-1233xf, HCFC-244db and/or HFO-1234yf and at least one additional compound. For the composition comprising 1234yf, the additional compound is selected from the group consisting of HFO-1234ze, HFO-1243zf, HCFC-243db, HCFC-244db, HFC-245cb, HFC-245fa, HCFO-1233xf, HCFO-1233zd, HCFC-253fb, HCFC-234ab, HCFC-243fa, ethylene, HFC-23, CFC-13, HFC-143a, HFC-152a, HFC-236fa, HCO-1130, HCO-1130a, HFO-1336, HCFC-133a, HCFC-254fb, CHF═CHCl, HFO-1141, HCFO-1242zf, HCFO-1223xd, HCFC-233ab, HCFC-226ba, and HFC-227ca. Compositions comprising HCFC-243db, HCFO-1233xf, and/or HCFC-244db are useful in processes to make HFO-1234yf. Compositions comprising HFO-1234yf are useful, among other uses, as heat transfer compositions for use in refrigeration, air-conditioning and heat pump systems.
Abstract:
Disclosed are compositions comprising HCFC-243db, HCFO-1233xf, HCFC-244db and/or HFO-1234yf and at least one additional compound. For the composition comprising 1234yf, the additional compound is selected from the group consisting of HFO-1234ze, HFO-1243zf, HCFC-243db, HCFC-244db, HFC-245cb, HFC-245fa, HCFO-1233xf, HCFO-1233zd, HCFC-253fb, HCFC-234ab, HCFC-243fa, ethylene, HFC-23, CFC-13, HFC-143a, HFC-152a, HFC-236fa, HCO-1130, HCO-1130a, HFO-1336, HCFC-133a, HCFC-254fb, HCFC-1131, HFO-1141, HCFO-1242zf, HCFO-1223xd, HCFC-233ab, HCFC-226ba, and HFC-227ca. Compositions comprising HCFC-243db, HCFO-1233xf, and/or HCFC-244db are useful in processes to make HFO-1234yf. Compositions comprising HFO-1234yf are useful, among other uses, as heat transfer compositions for use in refrigeration, air-conditioning and heat pump systems.
Abstract:
Disclosed is a process for preparing a chlorinated alkene, comprising contacting a chlorinated alkane with a catalyst in a dehydrochlorination zone to produce a liquid reaction mixture comprising the chlorinated alkane and the chlorinated alkene, and extracting chlorinated alkene from the reaction mixture, wherein the concentration of the chlorinated alkene in the reaction mixture present in the dehydrochlorination zone is controlled such that the molar ratio of chlorinated alkene:chlorinated alkane is from 1:99 to 50:50.
Abstract:
Azeotropic or azeotrope-like mixtures of 1,3,3-trichloro-3-fluoroprop-1-ene (HCFO-1231zd) and hydrogen fluoride (HF). Such compositions are useful as a feed stock or intermediate in the production of 1,1,1,3,3-pentafluoropropane (HFC-245fa), 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd), and 1,3,3,3-tetrafluoropropene (HFO-1234ze).
Abstract:
The present invention relates, in part, to the discovery that the presence of impurities in 1,1,2,3-tetrachloropropene (1230xa) results in catalyst instability during the fluorination of 1230xa to 2-chloro-3,3,3-trifluoropropene. By substantially removing the impurities, it is shown that the catalyst life is extended and results in improved operation efficiency of the fluorination reaction. Such steps similarly result in an overall improvement in the production of certain hydrofluoroolefins, particularly 2,3,3,3-tetrafluoropropene (1234yf).
Abstract:
Provided are azeotropic or azeotrope-like mixtures of 1,1,3,3-tetrachloroprop-1-ene (HCO-1230za) and hydrogen fluoride. Such compositions are useful as feed stock in the production of HFC-245fa and HCFO-1233zd.
Abstract:
The present invention provides a process of fluorination in liquid phase in a solvent medium of a compound of formula (II) CX1X2=CZCX3X4X5, in which Z represents H, Cl or F, and each X1 represents independently hydrogen or chlorine, given that at least one of the X1 represents a chlorine.
Abstract:
This invention is directed to a method for mitigating HCl generation during 1230xa purification, which comprises the steps of; (a) adding a chelating agent into 1230xa crude, and (b) conducting the 1230xa purification in the presence of said chelating agent at a quantity sufficient to reduce or prevent 1230xa decomposition. Examples of chelating agent include tributyl phosphate (TBP), tripropyl phosphate (TPP), and triethyl phosphate (TEP). The concentration of chelating agent in 1230xa crude can range from 0.001 to 20 wt %, preferably from 0.01 to 10 wt %, and more preferably from 0.1 to 5 wt %.