摘要:
Processes for separating an azeotropic mixture are provided. In an embodiment, such a process comprises exposing an azeotropic mixture comprising a first (hydro)fluorocarbon and a second (hydro)fluorocarbon to an ionic liquid comprising a cation and a non-fluorinated anion at a temperature and a pressure at which the ionic liquid absorbs more of one of the first and second (hydro)fluorocarbons than another of the first and second (hydro)fluorocarbons as determined on a mass basis to form a (hydro)fluorocarbon-containing ionic liquid and a processed azeotropic mixture.
摘要:
The invention is directed to a process to continuously prepare a cyclic carbonate product by reacting an epoxide compound with carbon dioxide in the presence of a supported dimeric aluminium salen complex. The process is performed in a reactor comprising a slurry of the supported dimeric aluminium salen complex and liquid cyclic carbonate product. The produced cyclic carbonate is discharged from the reactor while the supported dimeric aluminium salen complex remains in the reactor. The liquid carbonate product is purified by means of distillation. Between the reactor and the distillation one or more buffer vessels are present having a volume of between 5 and 50 m3 per kmol of dimeric aluminium salen complex as present in the reactor.
摘要:
According to an embodiment, a method for producing a (hydro)halocarbon includes a step of purifying the (hydro)halocarbon by reduced-pressure distillation of an azeotropic or azeotropic-like composition containing the (hydro)halocarbon and a compound different from the (hydro)halocarbon. According to another embodiment, a method for producing a (hydro)halocarbon includes a step purifying the (hydro)halocarbon by reduced-pressure distillation of an azeotropic or azeotropic-like composition containing the (hydro)halocarbon and a compound different from the (hydro)halocarbon, wherein standard boiling points of both the (hydro)halocarbon and the compound are 80° C. or lower.
摘要:
The invention concerns a method for purifying 2-chloro-3,3,3-trifluoropropene (1233xf) from a first composition comprising 2-chloro-3,3,3-trifluoropropene and at least one of the compounds chosen from the group consisting of E-1-chloro-3,3,3-trifluoro-1-propene (1233zd E), 1,1,1,3,3-pentafluoropropane (245fa) and 1,1,1,3,3,3-hexafluoropropane (236fa), said method comprising the steps of bringing said first composition into contact with at least one organic extractant in order to form a second composition; extractive distillation of said second composition in order to form a third composition comprising at least one of the compounds chosen from the group consisting of E-1-chloro-3,3,3-trifluoro-1-propene (1233zd E), 1,1,1,3,3-pentafluoropropane (245fa) and 1,1,1,3,3,3-hexafluoropropane (236fa), and said organic extractant; and a stream comprising 2-chloro-3,3,3-trifluoropropene.
摘要:
By subjecting a starting material composition containing hexafluorobutadiene and at least one additional compound selected from the group consisting of octafluoro-1-butene, octafluoro-2-butene, heptafluoro-1-butene, and heptafluoro-2-butene to extractive distillation in the presence of an extraction solvent to reduce the concentration of the additional compound, hexafluorobutadiene with higher purity can be obtained.
摘要:
The present disclosure provides azeotrope or azeotrope-like compositions including trifluoroiodomethane (CF3I) and hexafluoropropene (HFP), and a method of forming an azeotrope or azeotrope-like composition comprising the step of combining hexafluoropropene (HFP) and trifluoroiodomethane (CF3I) to form an azeotrope or azeotrope-like comprising hexafluoropropene (HFP) and trifluoroiodomethane (CF3I) having a boiling point of about −31.21° C.±0.30° C. at a pressure of about 14.21 psia±0.30 psia.
摘要:
The invention relates to an azeotropic or quasi-azeotropic composition comprising hydrochloric acid and trifluoropropyne. The invention also relates to a method for separating 2,3,3,3-tetrafluoropropene and trifluoropropyne from a composition A containing 2,3,3,3-tetrafluoropropene and trifluoropropyne, said method comprising the steps of bringing said composition A into contact with an inorganic compound in order to form a composition B; and distilling composition B in order to from a first flow B1 containing trifluoropropyne and the inorganic compound, and a second flow B2 containing 2,3,3,3-tetrafluoropropene.
摘要:
The present invention concerns a method for producing for producing and purifying 2,3,3,3-tetrafluoro-1-propene (1234yf) from a first composition comprising 2,3,3,3-tetrafluoro-1-propene and chloromethane (40), said method comprising the steps of: (a) bringing said first composition into contact with at least one organic extractant in order to form a second composition; (b) extractive distillation of said second composition in order to form (i) a third composition comprising said organic extractant and chloromethane (40); and (ii) a stream comprising 2,3,3,3-tetrafluoro-1-propene (1234yf); (c) recovering and separating said third composition, preferably by distillation, in order to form a stream comprising said organic extractant and a stream comprising chloromethane (40).
摘要:
This invention is directed to a method for mitigating HCl generation during 1230xa purification, which comprises the steps of; (a) adding a chelating agent into 1230xa crude, and (b) conducting the 1230xa purification in the presence of said chelating agent at a quantity sufficient to reduce or prevent 1230xa decomposition. Examples of chelating agent include tributyl phosphate (TBP), tripropyl phosphate (TPP), and triethyl phosphate (TEP). The concentration of chelating agent in 1230xa crude can range from 0.001 to 20 wt %, preferably from 0.01 to 10 wt %, and more preferably from 0.1 to 5 wt %.
摘要:
Processes for isolating 1,1,1,2,3-pentachloropropane from a crude product stream containing the 1,1,1,2,3-pentachloropropane and ferric chloride. The processes may include deep distillation of the crude, treatment of the crude with a reagent that deactivates the ferric chloride followed by distillation on the deactivated crude stream, aqueous washing of the crude product stream to remove ferric chloride followed by distillation on the deactivated crude stream. Other embodiments simultaneously prepare 1,1,2,3-tetrachloroprene and 1,1,1,2,3-pentachloroprane.