Abstract:
A multilayer piezoelectric ceramic is such that: its piezoelectric ceramic layers do not contain lead as a constituent element, and have a perovskite compound expressed by the composition formula LixNayK1-x-yNbO3 (where 0.02
Abstract:
A method of forming a composite material for use as an isolator or circulator in a radiofrequency device comprises providing a low temperature fireable outer material, the low fireable outer material having a garnet or scheelite structure, inserting a high dielectric constant inner material having a dielectric constant above 30 within an aperture in the low temperature fireable outer material, and co-firing the lower temperature fireable outer material and the high dielectric constant inner material together at temperature between 650-900° C. to shrink the low temperature fireable outer material around an outer surface of the high dielectric constant inner material to form an integrated magnetic/dielectric assembly without the use of adhesive or glue.
Abstract:
The invention relates to a method of joining substrates. It is the object of the invention in this respect to join substrates of substrate materials together without having to exert an increased effort for a coating with additional coating processes to be carried out and to be able to achieve a good quality of the join connection in so doing. In the method in accordance with the invention a pretreatment of at least one join surface of a substrate to be joined is carried out in low pressure oxygen plasma prior to the actual joining. On the joining, a contact force acts on the substrates to be joined in the range 2 kPa to 5 MPa and in this process a heat treatment is carried out at an elevated temperature of at least 100° C. and at under pressure conditions of a maximum of 10 mbar, preferably
Abstract:
A piezoelectric material that has good insulating properties and piezoelectricity and is free of lead and potassium and a piezoelectric element that uses the piezoelectric material are provided. The piezoelectric material contains copper and a perovskite-type metal oxide represented by general formula (1): (1−x){(NayBa1-z)(NbzTi1-z)O3}-xBiFeO3 (where 0
Abstract:
Two substrate pieces are welded together with a focused laser beam. One of the pieces is transparent in the wave length of the laser beam. The two pieces are pressed together so the tops of the roughness of the joining surfaces become level and both a uniform and pocket like air layer is removed from between the surfaces. The focal point of the laser beam is focused in the common boundary surface of the substrate pieces and the pieces are set to movement in relation to the laser beam so that the focal point advances in the boundary surface according to the shape and length of the weld. The energy of the focal point melts the material of the two pieces at the same time. When the melts mix and harden, a weld is formed that joins the pieces hermetically and goes round the third piece(s) isolating it hermetically.
Abstract:
Provided is a piezoelectric/electrostrictive film type element in which the film thickness of the piezoelectric/electrostrictive film is small, the piezoelectric/electrostrictive film is dense, and the piezoelectric/electrostrictive film has good durability and insulation quality. The piezoelectric/electrostrictive film type element includes a substrate, a lower electrode film, a piezoelectric/electrostrictive film and an upper electrode film. The substrate and the lower electrode film are fixed adherently each other. The film thickness of the piezoelectric/electrostrictive film is 5 μm or less. The piezoelectric/electrostrictive film is composed of a piezoelectric/electrostrictive ceramic. The piezoelectric/electrostrictive ceramic contains lead zirconate titanate and a bismuth compound. The bismuth/lead ratio in the peripheral section inside the grain which is relatively close to the grain boundary is greater than the bismuth/lead ratio in the center section inside the grain which is relatively far from the grain boundary.
Abstract:
Disclosed is a manufacturing method for a thermistor element having a step wherein a thermistor raw material powder formed from a metal oxide, an organic binder powder, and a solvent are mixed and kneaded to form a clay, a step wherein the clay is extrusion-molded by means of a molding die to form a rod-shaped, green molded body having multiple through-holes, a step wherein the rod-shaped green molded body is dried to form a rod-shaped dried molded body, a step wherein the rod-shaped dried formed body is cut to a prescribed length to form a cut molded body having through-holes, and a step wherein lead wires are introduced into the through-holes of the cut molded body and firing is then performed to form a metal oxide sintered body for thermistor use from the cut molded body.
Abstract:
In a multilayer ceramic substrate manufactured by a non-shrinking process, a bonding strength of an external conductive film formed on a primary surface of the multilayer ceramic substrate is increased. After a laminate of a multilayer ceramic substrate is formed from first ceramic layers and second shrinkage suppressing ceramic layers, and an underlayer is formed along one primary surface of the multilayer ceramic substrate, an external conductive film is formed on the underlayer. A non-sintering ceramic material powder in a non-sintered state is included in both the external conductive film and the underlayer, and this non-sintering ceramic material powder is fixed due to diffusion of a glass component from the first ceramic layers.
Abstract:
The ceramic product provided by the present invention is provided with at least two ceramic members bonded to each other, and the bond parts between these ceramic members bonded to each other are formed from glass having leucite crystals precipitated within the glass matrix.
Abstract:
A main component has a general formula of {(1−x)(K1-a-bNaaLib)m(Nb1-c-dTacSbd)O3−x(M10.5Bi0.5)nM2O3} (wherein M1 is Ca, Sr or Ba, M2 is Ti, Zr or Sn, 0.005≦x≦0.5, 0≦a≦0.9, 0≦b≦0.3, 0≦a+b≦0.9, 0≦c≦0.5, 0≦d≦0.1, 0.9≦m≦1.1, and 0.9≦n≦1.1). At least one specific element selected from the group consisting of In, Sc, Y, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb and Lu is contained at as in sample numbers 46 to 48, 0.1 to 10 mol in total per 100 mols of the main component (preferably, 1.5 to 10 mol). This provides a piezoelectric ceramic composition and a piezoelectric ceramic electronic component that can have a desired high piezoelectric d constant in a consistent and highly efficient manner in both a very low electric field and a high electric field.