Abstract:
An apparatus and method for performing analysis and identification of molecules have been presented. In one embodiment, a portable molecule analyzer includes a sample input/output connection to receive a sample, a nanopore-based sequencing chip to perform analysis on the sample substantially in real-time, and an output interface to output result of the analysis.
Abstract:
A rigid mask protects selective portions of a chip including a plurality of wells for biochemical reactions. The rigid mask includes a supporting portion and a plurality of legs, where each leg is provided with a rigid stem and a plate. The plurality of legs are arranged and fixed with respect to the supporting portion in a way aligned to the spatial arrangement of the wells, and are configured in such a way that, when each leg is inserted into the corresponding well, the respective plate covers at least in part the bottom of the well, protecting it during a chemical/physical treatment of side walls of the wells.
Abstract:
An apparatus and method for performing analysis and identification of molecules have been presented. In one embodiment, a portable molecule analyzer includes a sample input/output connection to receive a sample, a nanopore-based sequencing chip to perform analysis on the sample substantially in real-time, and an output interface to output result of the analysis.
Abstract:
Methods of producing substrates having selected active chemical regions by employing elements of the substrates in assisting the localization of active chemical groups in desired regions of the substrate. The methods may include optical, chemical and/or mechanical processes for the deposition, removal, activation and/or deactivation of chemical groups in selected regions of the substrate to provide selective active regions of the substrate.
Abstract:
This disclosure provides methods, devices and systems for using a stamp to enhance selectivity between surface layers of a substrate, and to facilitate functionalizing selected layers. An array of flat stamps may be used to concurrently stamp multiple regions of a substrate to transfer one or more substances to the topmost layer or layers of the substrate. If desired, the affected regions of the substrate may be isolated from each other through the use of a reactor plate that, when clamped to the substrate's surface, forms reaction wells in the area of stamping. The stamp area can, if desired, be configured for stamping the substrate after the reactor plate has been fitted, with the individual stamps sized and arranged in a manner that permits stamping within each reaction well. If applied in a combinatorial process, a robotic process may be used to transfer multiple combinations of contact substances and processing chemicals to each reaction well to perform many concurrent processes upon a single substrate (e.g., a single coupon). The methods, devices and systems provided facilitate semiconductor design, optimization and qualification, and may be adapted to production manufacturing.
Abstract:
Methods of producing substrates having selected active chemical regions by employing elements of the substrates in assisting the localization of active chemical groups in desired regions of the substrate. The methods may include optical, chemical and/or mechanical processes for the deposition, removal, activation and/or deactivation of chemical groups in selected regions of the substrate to provide selective active regions of the substrate.
Abstract:
An apparatus and method for performing analysis and identification of molecules have been presented. In one embodiment, a portable molecule analyzer includes a sample input/output connection to receive a sample, a nanopore-based sequencing chip to perform analysis on the sample substantially in real-time, and an output interface to output result of the analysis.
Abstract:
The invention relates to an apparatus (100) for detecting analytes (26) in a sample comprising—a base carrier (10); —a multitude of sensor carriers (18) which are arranged on the base carrier (10) and can be assigned to at least two different sensor carrier populations (181, 182, 183); —the sensor carrier populations (181, 182, 183) being defined at least by different sensor molecules (24) which are assigned to the sensor carrier (18) and each have at least one measurable specificity for an analyte (26) or an analyte group, such that the population (181, 182, 183) of the sensor carriers (18) constitutes a coding which enables the assignment of sensor molecules (24) and/or analyte (26). The apparatus is characterized in that the sensor carriers (18) are present without contact to one another with a predetermined mean distance between one another and with a random statistical distribution on the base carrier (10) with regard to the population (181, 182, 183), as a result of which the detection of only a single entity of a sensor carrier (18) in each case is ensured during the analysis of the sensor molecules and/or of the binding analytes.
Abstract:
The present invention provides a microfluidic device for synthesizing an array of compounds and methods for using the same. In particular, the microfluidic device of the present invention comprises a solid support base, an elastomeric layer attached to the solid support, and a plurality of flow channels located within the interface between the solid support and the elastomeric layer. In addition, the solid support comprises a functional group for forming a bond with a reactive reagent. In some embodiments, the microfluidic device further comprises a second plurality of flow channels that intersect the first plurality of flow channels. A plurality of control channels are also present in the microfluidic devices of the present invention. The control channels can be actuated to regulate flow of fluids within the flow channel(s).
Abstract:
A method and apparatus for selectively applying a print material onto a substrate for the synthesis of an array of oligonucleotides at selected regions of a substrate. The print material includes a barrier material, a monomer sequence, a nucleoside, a deprotection agent, a carrier material, among other materials. The method and apparatus also relies upon standard DMT based chemistry, and a vapor phase deprotection agent such as solid TCA and the like.