Abstract:
The invention relates to a method for producing a substrate structured by nanowires, characterized in that no lubricant and no lithographic resist mask is used in the method, and only by moving a donor substrate having nanowires relative to a substrate and by locally tribological properties on the surface of the substrate, a specified number of nanowires is deposited selectively at locally defined points of the substrate. The invention further relates to a substrate that can be produced using the method according to the invention, and which selectively contains a specified number of nanowires on a surface at locally defined points. The invention further relates to the use of the substrate according to the invention in microelectronics, microsystems technology, and/or micro-sensor systems.
Abstract:
The present invention relates to a process for producing a 3-dimensional structure assembled from nanoparticles by using a mask having a pattern of perforations, which comprises the steps of: in a grounded reactor, placing a mask having a pattern of perforations corresponding to a determined pattern at a certain distance above a substrate to be patterned, and then applying voltage to the substrate to form an electrodynamic focusing lens; and introducing charged nanoparticles into the reactor, the charged particles being guided to the substrate through the pattern of perforations so as to be selectively attached to the substrate with 3-dimensional shape. According to the process of the present invention, a 3-dimensional structure of various shapes can be produced without producing noise pattern, with high accuracy and high efficiency.
Abstract:
This invention relates to a method of fabricating a three-dimensional copper nanostructure, including manufacturing a specimen configured to include a SiO2 mask; performing multi-directional slanted plasma etching to form a three-dimensional etching structure layer on the specimen; performing plating so that a multi-directional slanted plasma etched portion of the specimen is filled with a metal; removing an over-plated portion and the SiO2 mask from the metal layer; and removing a portion of a surface of the specimen other than the metal which is the three-dimensional etching structure layer. In this invention, a uniform copper nanostructure array can be obtained by subjecting a large-area specimen disposed in a Faraday cage to multi-directional slanted plasma etching using high-density plasma, forming a copper film on the etched portion of the specimen, and removing an over-plated copper film and the SiO2 mask, and the diameter of the copper nanostructure can be arbitrarily adjusted, thus attaining high applicability.
Abstract:
A layer structure may include a carrier, a two-dimensional layer, and a holding structure. The holding structure is arranged on the carrier and holds the two-dimensional layer on the carrier such that at least a portion of the two-dimensional layer is spaced apart from the carrier. The holding structure includes a holding portion extending from the two-dimensional layer towards the carrier beyond the at least a portion of the two-dimensional layer spaced apart from the carrier.
Abstract:
What is described is a method for producing a device having providing a substrate having an electrode which is exposed at a main side of the substrate. In addition, the method has forming a micro or nanostructure which has a spacer which is based on the electrode, wherein forming has the steps of: depositing a sacrificial layer on the main side, wherein the sacrificial layer has amorphous silicon or silicon dioxide; patterning a hole and/or trench into the sacrificial layer by means of a DRIE process; coating the sacrificial layer by means of ALD or MOCVD so that material of the nano or microstructure forms at the hole and/or trench, and removing the sacrificial layer.
Abstract:
A rigid mask protects selective portions of a chip including a plurality of wells for biochemical reactions. The rigid mask includes a supporting portion and a plurality of legs, where each leg is provided with a rigid stem and a plate. The plurality of legs are arranged and fixed with respect to the supporting portion in a way aligned to the spatial arrangement of the wells, and are configured in such a way that, when each leg is inserted into the corresponding well, the respective plate covers at least in part the bottom of the well, protecting it during a chemical/physical treatment of side walls of the wells.
Abstract:
This invention relates to a method of fabricating a three-dimensional copper nanostructure, including manufacturing a specimen configured to include a SiO2 mask; performing multi-directional slanted plasma etching to form a three-dimensional etching structure layer on the specimen; performing plating so that a multi-directional slanted plasma etched portion of the specimen is filled with a metal; removing an over-plated portion and the SiO2 mask from the metal layer; and removing a portion of a surface of the specimen other than the metal which is the three-dimensional etching structure layer. In this invention, a uniform copper nanostructure array can be obtained by subjecting a large-area specimen disposed in a Faraday cage to multi-directional slanted plasma etching using high-density plasma, forming a copper film on the etched portion of the specimen, and removing an over-plated copper film and the SiO2 mask, and the diameter of the copper nanostructure can be arbitrarily adjusted, thus attaining high applicability.
Abstract:
A method of producing a shadow mask having a set of apertures (the set of apertures including a given aperture with an aperture boundary) uses a wafer having at least a first silicon layer, a second silicon layer, and an insulator layer between the first and second silicon layers. A first portion of the first silicon layer within the aperture boundary is removed. This produces a second portion of the first silicon layer, which remains within the aperture boundary. The second silicon layer within the aperture boundary is removed, as well as the insulator layer within the aperture boundary. The second portion of the first silicon layer remaining within the aperture boundary then is removed.
Abstract:
A method of patterning a cylindrical tool, including providing a stamp including a base and a layer of solid state ionic conductor thereon, applying a negative of a predetermined pattern of features on a major surface of the solid state ionic conductor, providing a cylindrical tool having a metallic surface positioned proximate the stamp, and applying an electric field between the metallic surface and a cathode while moving the stamp against the metallic surface in rolling line contact so as to impart the predetermined pattern of features onto the metallic surface, wherein the cathode is either the base or a conductive element positioned adjacent to the base. The positive of the predetermined pattern of features may include a multiplicity of nano-sized features.
Abstract:
A manufacturing method of a physical quantity sensor includes forming first and second fixed electrodes, and a dummy electrode on a substrate; and a movable body forming. The electrode forming includes forming a first mask layer on the substrate, forming a first electrode material layer by forming a first conductive layer on the substrate and the first mask layer, forming a second conductive layer on the substrate and the first electrode material layer, forming a second mask layer by forming a mask material layer on the second conductive layer, and removing a part of a section of the mask material layer not overlapping the first electrode material layer in plan view, and forming a second electrode material layer by etching the second conductive layer, with the second mask layer as a mask such that the second conductive layer is provided on the first electrode material layer and on the substrate.