摘要:
A lateral bipolar transistor includes trench emitter and trench collector regions to form ultra-narrow emitter regions, thereby improving emitter efficiency. The same trench process is used to form the emitter/collector trenches as well as the trench isolation structures so that no additional processing steps are needed to form the trench emitter and collector. In embodiments of the present invention, the trench emitter and trench collector regions may be formed using ion implantation into trenches formed in a semiconductor layer. In other embodiments, the trench emitter and trench collector regions may be formed by out-diffusion of dopants from heavily doped polysilicon filled trenches.
摘要:
A lateral bipolar transistor includes trench emitter and trench collector regions to form ultra-narrow emitter regions, thereby improving emitter efficiency. The same trench process is used to form the emitter/collector trenches as well as the trench isolation structures so that no additional processing steps are needed to form the trench emitter and collector. In embodiments of the present invention, the trench emitter and trench collector regions may be formed using ion implantation into trenches formed in a semiconductor layer. In other embodiments, the trench emitter and trench collector regions may be formed by out-diffusion of dopants from heavily doped polysilicon filled trenches.
摘要:
A lateral bipolar transistor with deep emitter and deep collector regions is formed using multiple epitaxial layers of the same conductivity type. Deep emitter and deep collector regions are formed without the use of trenches. Vertically aligned diffusion regions are formed in each epitaxial layer so that the diffusion regions merged into a contiguous diffusion region after annealing to function as emitter or collector or isolation structures. In another embodiment, a lateral trench PNP bipolar transistor is formed using trench emitter and trench collector regions. In yet another embodiment, a lateral PNP bipolar transistor with a merged LDMOS transistor is formed to achieve high performance.
摘要:
A lateral bipolar transistor with deep emitter and deep collector regions is formed using multiple epitaxial layers of the same conductivity type. Deep emitter and deep collector regions are formed without the use of trenches. Vertically aligned diffusion regions are formed in each epitaxial layer so that the diffusion regions merged into a contiguous diffusion region after annealing to function as emitter or collector or isolation structures. In another embodiment, a lateral trench PNP bipolar transistor is formed using trench emitter and trench collector regions. In yet another embodiment, a lateral PNP bipolar transistor with a merged LDMOS transistor is formed to achieve high performance.
摘要:
This invention discloses a semiconductor power device disposed in a semiconductor substrate. The semiconductor power device includes trenched gates each having a stick-up gate segment extended above a top surface of the semiconductor substrate surrounded by sidewall spacers. The semiconductor power device further includes slots opened aligned with the sidewall spacers substantially parallel to the trenched gates. The stick-up gate segment further includes a cap composed of an insulation material surrounded by the sidewall spacers. A layer of barrier metal covers a top surface of the cap and over the sidewall spacers and extends above a top surface of the slots. The slots are filled with a gate material same as the gate segment for functioning as additional gate electrodes for providing a depletion layer extends toward the trenched gates whereby a drift region between the slots and the trenched gate is fully depleted at a gate-to-drain voltage Vgs=0 volt.
摘要:
This invention discloses a semiconductor power device disposed on a semiconductor substrate includes a plurality of deep trenches with an epitaxial layer filling said deep trenches and a simultaneously grown top epitaxial layer covering areas above a top surface of said deep trenches over the semiconductor substrate. A plurality of trench MOSFET cells disposed in said top epitaxial layer with the top epitaxial layer functioning as the body region and the semiconductor substrate acting as the drain region whereby a super junction effect is achieved through charge balance between the epitaxial layer in the deep trenches and regions in the semiconductor substrate laterally adjacent to the deep trenches. Each of the trench MOSFET cells further includes a trench gate and a gate-shielding dopant region disposed below and substantially aligned with each of the trench gates for each of the trench MOSFET cells for shielding the trench gate during a voltage breakdown.
摘要:
A semiconductor device includes a gate electrode, a top source region disposed next to the gate electrode, a drain region disposed below the bottom of the gate electrode, a oxide disposed on top of the source region and the gate electrode, and a doped polysilicon spacer disposed along a sidewall of the source region and a sidewall of the oxide. Methods for manufacturing such device are also disclosed. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
A body layer is formed in an epitaxial layer and a gate electrode formed in a trench in the body and epitaxial layer. A gate insulator is disposed along a sidewall of the gate electrode between the gate electrode and the source, between the gate electrode and the P-body and between the gate electrode and the epitaxial layer. A cap insulator is disposed on top of the gate electrode. A doped spacer is disposed along a sidewall of the source and a sidewall of the gate insulator. The body layer next to the polysilicon spacer is etched back below the bottom of the polysilicon spacer. Dopants are diffused from the spacer to form the source region.
摘要:
A solder-top enhanced semiconductor device is proposed for packaging. The solder-top device includes a device die with a top metal layer patterned into contact zones and contact enhancement zones. At least one contact zone is electrically connected to at least one contact enhancement zone. Atop each contact enhancement zone is a solder layer for an increased composite thickness thus lowered parasitic impedance. Where the top metal material can not form a uniform good electrical bond with the solder material, the device die further includes an intermediary layer sandwiched between and forming a uniform electrical bond with the top metal layer and the solder layer. A method for making the solder-top device includes lithographically patterning the top metal layer into the contact zones and the contact enhancement zones; then forming a solder layer atop each of the contact enhancement zones using a stencil process for an increased composite thickness.
摘要:
A semiconductor device includes a gate electrode, a top source region disposed next to the gate electrode, a drain region disposed below the bottom of the gate electrode, a oxide disposed on top of the source region and the gate electrode, and a doped polysilicon spacer disposed along a sidewall of the source region and a sidewall of the oxide. Methods for manufacturing such device are also disclosed. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.