Abstract:
An example semiconductor package includes a structure, a first semiconductor chip disposed on an upper surface of the structure and electrically connected to the structure, a dummy semiconductor chip disposed on and contacting the upper surface of the structure, a molding layer surrounding a sidewall of the first semiconductor chip and a sidewall of the dummy semiconductor chip on the upper surface of the structure, a redistribution layer disposed on an upper surface of the first semiconductor chip, an upper surface of the dummy semiconductor chip, and an upper surface of the molding layer, a first through-via extending through the molding layer in a vertical direction and electrically connecting the structure and the redistribution layer, a second through-via extending through the dummy semiconductor chip in the vertical direction and electrically connecting the structure and the redistribution layer, and a capacitor disposed inside the dummy semiconductor chip.
Abstract:
A first insulating layer is formed on a substrate. An opening is formed in the first insulating layer. A barrier layer is formed on the first insulating layer and conforming to sidewalls of the first insulating layer in the opening, and a conductive layer is formed on the barrier layer. Chemical mechanical polishing is performed to expose the first insulating layer and leave a barrier layer pattern in the opening and a conductive layer pattern on the barrier layer pattern in the opening, wherein a portion of the conductive layer pattern protrudes above an upper surface of the insulating layer and an upper surface of the barrier layer pattern. A second insulating layer is formed on the first insulating layer, the barrier layer pattern and the conductive layer pattern and planarized to expose the conductive layer pattern. A second substrate may be bonded to the exposed conductive layer pattern.
Abstract:
Semiconductor device including through via structure and redistribution structures is provided. The semiconductor device may include internal circuits on a first side of a substrate, a through via structure vertically penetrating the substrate to be electrically connected to one of the internal circuits, a redistribution structure on a second side of the substrate and electrically connected to the through via structure, and an insulating layer between the second side of the substrate and the redistribution structure. The redistribution structure may include a redistribution barrier layer and a redistribution metal layer, and the redistribution barrier layer may extend on a bottom surface of the redistribution metal layer and may partially surround a side of the redistribution metal layer.
Abstract:
A semiconductor device and a semiconductor package, the device including a pad interconnection structure that penetrates a first buffer dielectric layer and a second buffer dielectric layer, wherein the pad interconnection structure includes copper and tin, the pad interconnection structure includes a central part, a first intermediate part surrounding the central part; a second intermediate part surrounding the first intermediate part, and an outer part surrounding the second intermediate part, a grain size of the outer part is less than a grain size of the second intermediate part, the grain size of the second intermediate part is less than a grain size of the first intermediate part, and the grain size of the first intermediate part is less than a grain size of the central part.
Abstract:
Semiconductor devices are provided. A semiconductor device includes a substrate, a first conductive structure on the substrate, and a second conductive structure on the first conductive structure. The semiconductor device includes first and second metal-diffusion-blocking layers on respective sidewalls of the first and second conductive structures. The semiconductor device includes an insulating layer between the first and second metal-diffusion-blocking layers. Moreover, the semiconductor device includes a metal-diffusion-shield pattern in the insulating layer and spaced apart from the first conductive structure.
Abstract:
Semiconductor devices are provided. A semiconductor device includes a substrate, a first conductive structure on the substrate, and a second conductive structure on the first conductive structure. The semiconductor device includes first and second metal-diffusion-blocking layers on respective sidewalls of the first and second conductive structures. The semiconductor device includes an insulating layer between the first and second metal-diffusion-blocking layers. Moreover, the semiconductor device includes a metal-diffusion-shield pattern in the insulating layer and spaced apart from the first conductive structure.
Abstract:
The present inventive concepts provide semiconductor devices and methods for fabricating the same. The method includes forming an inter-metal dielectric layer including a plurality of dielectric layers on a substrate, forming a via-hole vertically penetrating the inter-metal dielectric layer and the substrate, providing carbon to at least one surface, such as a surface including carbon in the plurality of dielectric layers exposed by the via-hole, forming a via-dielectric layer covering an inner surface of the via-hole, and forming a through-electrode surrounded by the via-dielectric layer in the via-hole.
Abstract:
A photodetector structure can include a silicon substrate and a silicon layer on the silicon substrate, that can include a first portion of an optical transmission medium that further includes a silicon cross-sectional transmission face. A germanium layer can be on the silicon substrate and can include a second portion of the optical transmission medium, adjacent to the first portion can include a germanium cross-sectional transmission face butt-coupled to the silicon cross-sectional transmission face.
Abstract:
Semiconductor devices having through-vias and methods for fabricating the same are described. The method may include forming a hole opened toward a top surface of a substrate and partially penetrating the substrate, forming a sacrificial layer partially filling the hole, forming a through-via in the hole partially filled with the sacrificial layer, forming a via-insulating layer between the through-via and the substrate, and exposing the through-via through a bottom surface of the substrate. Forming the sacrificial layer may include forming an insulating flowable layer on the substrate, and constricting the insulating flowable layer to form a solidified flowable layer.
Abstract:
A photodetector structure can include a silicon substrate and a silicon layer on the silicon substrate, that can include a first portion of an optical transmission medium that further includes a silicon cross-sectional transmission face. A germanium layer can be on the silicon substrate and can include a second portion of the optical transmission medium, adjacent to the first portion can include a germanium cross-sectional transmission face butt-coupled to the silicon cross-sectional transmission face.