Abstract:
A semiconductor device is provided having an insulating layer on a semiconductor substrate. The insulating layer and the semiconductor substrate define a through hole penetrating the semiconductor substrate and the insulating layer. A through electrode is provided in the through hole. A spacer is provided between the semiconductor substrate and the through electrode. An interconnection in continuity with the through electrode is provided on the insulating layer. A barrier layer covering a side and a bottom of the interconnection and a side of the through electrode is provided and the barrier layer is formed in one body.
Abstract:
A semiconductor device can include a substrate that has a surface. A via structure can extend through the substrate toward the surface of the substrate, where the via structure includes an upper surface. A pad structure can be on the surface of the substrate, where the pad structure can include a lower surface having at least one protrusion that is configured to protrude toward the upper surface of the via structure.
Abstract:
A semiconductor device and a method of manufacturing the same, the device including a through-hole electrode structure extending through a substrate; a redistribution layer on the through-hole electrode structure; and a conductive pad, the conductive pad including a penetrating portion extending through the redistribution layer; and a protrusion portion on the penetrating portion, the protrusion portion protruding from an upper surface of the redistribution layer, wherein a central region of an upper surface of the protrusion portion is flat and not closer to the substrate than an edge region of the upper surface of the protrusion portion.
Abstract:
A first insulating layer is formed on a substrate. An opening is formed in the first insulating layer. A barrier layer is formed on the first insulating layer and conforming to sidewalls of the first insulating layer in the opening, and a conductive layer is formed on the barrier layer. Chemical mechanical polishing is performed to expose the first insulating layer and leave a barrier layer pattern in the opening and a conductive layer pattern on the barrier layer pattern in the opening, wherein a portion of the conductive layer pattern protrudes above an upper surface of the insulating layer and an upper surface of the barrier layer pattern. A second insulating layer is formed on the first insulating layer, the barrier layer pattern and the conductive layer pattern and planarized to expose the conductive layer pattern. A second substrate may be bonded to the exposed conductive layer pattern.
Abstract:
A method of manufacturing a semiconductor device is provided. The method includes forming a preliminary via structure through a portion of a substrate; partially removing the substrate to expose a portion of the preliminary via structure; forming a protection layer structure on the substrate to cover the portion of the preliminary via structure that is exposed; partially etching the protection layer structure to form a protection layer pattern structure and to partially expose the preliminary via structure; wet etching the preliminary via structure to form a via structure; and forming a pad structure on the via structure to have a flat top surface.
Abstract:
A semiconductor device includes a protective layer, a redistribution pattern, a pad pattern and an insulating polymer layer. The protective layer may be formed on a substrate. The redistribution pattern may be formed on the protective layer. An upper surface of the redistribution may be substantially flat. The pad pattern may be formed directly on the redistribution pattern. An upper surface of the pad pattern may be substantially flat. The insulating polymer layer may be formed on the redistribution pattern and the pad pattern. An upper surface of the insulating polymer layer may be lower than the upper surface of the pad pattern.
Abstract:
A semiconductor device includes a substrate having a die region and a scribe region surrounding the die region, a plurality of via structures penetrating through the substrate in the die region, a portion of the via structure being exposed over a surface of the substrate, and a protection layer pattern structure provided on the surface of the substrate surrounding a sidewall of the exposed portion of the via structure and having a protruding portion covering at least a portion of the scribe region adjacent to the via structure.
Abstract:
A semiconductor device includes a protective layer, a redistribution pattern, a pad pattern and an insulating polymer layer. The protective layer may be formed on a substrate. The redistribution pattern may be formed on the protective layer. An upper surface of the redistribution may be substantially flat. The pad pattern may be formed directly on the redistribution pattern. An upper surface of the pad pattern may be substantially flat. The insulating polymer layer may be formed on the redistribution pattern and the pad pattern. An upper surface of the insulating polymer layer may be lower than the upper surface of the pad pattern. The semiconductor device may have a high reliability.
Abstract:
A semiconductor device includes a substrate having a die region and a scribe region surrounding the die region, a plurality of via structures penetrating through the substrate in the die region, a portion of the via structure being exposed over a surface of the substrate, and a protection layer pattern structure provided on the surface of the substrate surrounding a sidewall of the exposed portion of the via structure and having a protruding portion covering at least a portion of the scribe region adjacent to the via structure.
Abstract:
Disclosed is a method of manufacturing a semiconductor device. A preliminary wafer-carrier assembly is formed in such a way that a wafer structure having a plurality of via structures is adhered to a light-penetrating carrier by a photodegradable adhesive. A wafer-carrier assembly having an optical shielding layer for inhibiting or preventing a light penetration is formed such that the wafer structure, the carrier and the adhesive are covered with the optical shielding layer except for the backside of the wafer structure through which the via structures are exposed. An interconnector is formed on the backside of the wafer structure such that the via structures make contact with the interconnector, and the wafer structure and the carrier are separated from each other by irradiating a light to the wafer-carrier assembly. Accordingly, the adhesive is inhibited or prevented from being dissolved during a plasma process on the wafer-carrier assembly.