Abstract:
A method of fabricating a three dimensional integrated circuit comprises forming a redistribution layer on a first side of a packaging component, forming a holding chamber in the redistribution layer, attaching an integrated circuit die on the first side of the packaging component, wherein an interconnect bump of the integrated circuit die is inserted into the holding chamber, applying a reflow process to the integrated circuit die and the packaging component and forming an encapsulation layer on the packaging component.
Abstract:
Provided is a semiconductor device having a pad on a semiconductor chip, a first passivation film formed over the semiconductor chip and having an opening portion on the pad of a probe region and a coupling region, a second passivation film formed over the pad and the first passivation film and having an opening portion on the pad of the coupling region, and a rewiring layer formed over the coupling region and the second passivation film and electrically coupled to the pad. The pad of the probe region placed on the periphery side of the semiconductor chip relative to the coupling region has a probe mark and the rewiring layer extends from the coupling region to the center side of the semiconductor chip. The present invention provides a technology capable of achieving size reduction, particularly pitch narrowing, of a semiconductor device.
Abstract:
The present disclosure relates to a semiconductor package having encapsulated dies with enhanced thermal performance. The semiconductor package includes a carrier, an etched flip chip die attached to a top surface of the carrier, a first mold compound, and a second mold compound. The etched flip chip die includes a device layer and essentially does not include a substrate. The first mold compound resides on the top surface of the carrier, surrounds the etched flip chip die, and extends beyond a top surface of the etched flip chip die to form a cavity, to which the top surface of the etched flip chip die is exposed. The second mold compound fills the cavity and is in contact with the top surface of the etched flip chip die. The second mold compound having a high thermal conductivity improves thermal performance of the etched flip chip die.
Abstract:
The present disclosure relates to enhancing the thermal performance of encapsulated flip chip dies. According to an exemplary process, a plurality of flip chip dies are attached on a top surface of a carrier, and a first mold compound is applied over the top surface of the carrier to encapsulate the plurality of flip chip dies. The first mold compound is thinned down to expose a substrate of each flip chip die and the substrate of each flip chip die is then substantially etched away to provide an etched flip chip die that has an exposed surface at the bottom of a cavity. Next, a second mold compound with high thermal conductivity is applied to substantially fill each cavity and the top surface of the second mold compound is planarized. Finally, the encapsulated etched flip chip dies can be marked, singulated, and tested as a module.
Abstract:
Methods and apparatus for coupling a stiffener frame to a circuit board are disclosed. In one aspect, an apparatus for engaging a stiffener frame and a circuit board positioned in a fixture is provided. The stiffener frame includes an edge. The apparatus includes an alignment plate that has a shoulder to engage the edge of the stiffener frame. The alignment plate includes a first opening with a peripheral wall to restrain movement of a circuit board relative to the stiffener frame.
Abstract:
A substrate for light-emitting diodes, obtained by stacking a single crystal layer to form a light-emitting diode element onto a ceramic composite layer for light conversion, the ceramic composite layer having been formed by a unidirectional solidification method so that the ceramic composite layer comprises a solidified body having formed therein at least two or more oxide phases selected from single metal oxides and complex metal oxides to be continuously and three-dimensionally entangled with each other, with each oxide phase having a single crystal orientation, wherein at least one oxide phase out of the oxide phases in the solidified body contains a metal element oxide capable of emitting fluorescence.
Abstract:
A package structure for an optoelectronic device. The package structure comprises a device chip reversely disposed on a first substrate, which comprises a second substrate and a first dielectric layer between the first and second substrates. The first dielectric layer comprises a pad formed in a corner of the first dielectric layer non-overlapping the second substrate, such that the surface and sidewall of the pad are exposed. A metal layer is formed directly on the exposed surface of the pad and covers the second substrate. A protective layer covers the metal layer, having an opening to expose a portion of the metal layer on the second substrate. A solder ball is disposed in the opening, electrically connecting to the metal layer. The invention also discloses a method for fabricating the same.
Abstract:
This invention provides a semiconductor device that solves a problem that a pattern of a wiring formed on a back surface of a semiconductor substrate is reflected on an output image. A light receiving element (e.g. a CCD, an infrared ray sensor, a CMOS sensor, or an illumination sensor) is formed on a front surface of a semiconductor substrate, and a plurality of ball-shaped conductive terminals is disposed on a back surface of the semiconductor substrate. Each of the conductive terminals is electrically connected to a pad electrode on the front surface of the semiconductor substrate through a wiring layer. The wiring layer and the conductive terminal are formed on the back surface of the semiconductor substrate except in a region overlapping the light receiving element in a vertical direction, and are not disposed in a region overlapping the light receiving element.
Abstract:
A substrate for light-emitting diodes, which uses no fluorescent powder, enables formation of a good light-emitting diode element, resulting in less deterioration, transmits light of the light-emitting diode element, emits light by utilizing a part of the transmitted light, and allows the transmitted light and newly emitted light to be mixed and emitted, is provided.The substrate for light-emitting diodes of the present invention is a substrate for light-emitting diodes, obtained by stacking a single crystal layer enabling to form a light-emitting diode element thereon and a ceramic composite layer for light conversion comprising a solidified body having formed therein at least two or more oxide phases selected from a single metal oxide and a complex metal oxide to be continuously and three-dimensionally entangled with each other, wherein at least one oxide phase out of oxide phases in the solidified body contains a metal element oxide capable of emitting fluorescence.
Abstract:
The invention provides an image sensor package and method for fabricating the same. The image sensor package comprises a first substrate comprising a sensor device thereon and a hole therein. A bonding pad comprising a first opening is formed on an upper surface of the first substrate. A second substrate comprising a spacer element with a second opening therein is disposed on the first substrate. A conductive plug is formed in the hole and passes through the first and second openings to the second substrate to electrically contact with the bonding pad. A conductive layer is formed on a lower surface of the first substrate and electrically connects to the conductive plug. A solder ball is formed on the conductive layer and electrically connects to the bonding pad by the conductive plug. The image sensor package further comprises a second substrate bonding to the first substrate. The image sensor package is relatively less thick, thus, the dimensions thereof are relatively reduced.