摘要:
A silicon wafer is provided in which a dopant is phosphorus, resistivity is from 0.5 mΩ·cm to 1.2 mΩ·cm, and carbon concentration is 3.0×1016 atoms/cm3 or more. The carbon concentration is decreased by 10% or more near a surface of the silicon wafer compared with a center-depth of the silicon wafer.
摘要:
A manufacturing method of an epitaxial silicon wafer includes forming an epitaxial film made of silicon on a surface of a silicon wafer in a trichlorosilane gas atmosphere; and setting the nitrogen concentration of the surface of the epitaxial film through inward diffusion from a nitride film on the epitaxial film, the nitride film being formed by subjecting the silicon wafer provided with the epitaxial film to heat treatment in a nitrogen atmosphere.
摘要:
A method of reducing warp imparted to a silicon wafer having a (110) plane orientation and a notch orientation by anisotropic film stress of a multilayer film that is to be formed on a surface of the silicon wafer, that includes forming the multilayer film on a surface of the silicon wafer in an orientation so that a direction in which the warp of the wafer will be greatest coincides with a direction in which Young's modulus of a crystal orientation of the silicon wafer is greatest. Also, a method of reducing warp imparted to a silicon wafer having a (111) plane orientation by isotropic film stress of a multilayer film to be formed on a surface of the silicon wafer, that includes, prior to forming the multilayer film, causing the silicon wafer to have an oxygen concentration of 8.0×1017 atoms/cm3 or more (ASTM F-121, 1979).
摘要:
A silicon wafer having a layer of oxygen precipitates and method of manufacturing thereof wherein the wafer exhibiting robustness characterized as having a ratio of a first average density from a first treatment that to a second average density from a second treatment is between 0.74 to 1.02, wherein the first treatment includes heating the wafer or a portion of the wafer at about 1150° C. for about 2 minutes and then between about 950 to 1000° C. for about 16 hours, and the second treatment includes heating the wafer or a portion of the wafer at about 780° C. for about 3 hours and then between about 950 to 1000° C. for about 16 hours. The wafer exhibits heretofore unattainable uniformity wherein a ratio of an oxygen precipitate density determined from any one cubic centimeter in the BMD layer of the wafer to another oxygen precipitate density from any other one cubic centimeter in the BMD layer of the wafer is in a range of 0.77 to 1.30.
摘要:
After determining the precipitated oxygen concentration and the residual oxygen concentration in a silicon wafer after heat treatment performed in a device fabrication process; the critical shear stress τcri at which slip dislocations are formed in the silicon wafer in the device fabrication process is determined based on the obtained precipitated oxygen concentration and residual oxygen concentration; and the obtained critical shear stress and the thermal stress τ applied to the silicon wafer in the heat treatment of the device fabrication process are compared, thereby determining that slip dislocations are formed in the silicon wafer in the device fabrication process when the thermal stress τ is equal to or more than the critical shear stress τcri, or determining that slip dislocations are not formed in the silicon wafer in the device fabrication process when the thermal stress τ is less than the critical shear stress τcri.
摘要:
A silicon wafer having a layer of oxygen precipitates and method of manufacturing thereof wherein the wafer exhibiting robustness characterized as having a ratio of a first average density from a first treatment that to a second average density from a second treatment is between 0.74 to 1.02, wherein the first treatment includes heating the wafer or a portion of the wafer at about 1150° C. for about 2 minutes and then between about 950 to 1000° C. for about 16 hours, and the second treatment includes heating the wafer or a portion of the wafer at about 780° C. for about 3 hours and then between about 950 to 1000° C. for about 16 hours. The wafer exhibits heretofore unattainable uniformity wherein a ratio of an oxygen precipitate density determined from any one cubic centimeter in the BMD layer of the wafer to another oxygen precipitate density from any other one cubic centimeter in the BMD layer of the wafer is in a range of 0.77 to 1.30.
摘要:
After determining the size of oxygen precipitates and the residual oxygen concentration in a silicon wafer after heat treatment performed in a device fabrication process; the critical shear stress τcri at which slip dislocations are formed in the silicon wafer in the device fabrication process is determined based on the obtained size of the oxygen precipitates and residual oxygen concentration; and the obtained critical shear stress τcri and the thermal stress τ applied to the silicon wafer in the heat treatment of the device fabrication process are compared, thereby determining that slip dislocations are formed in the silicon wafer in the device fabrication process when the thermal stress τ is equal to or more than the critical shear stress τcri, or determining that slip dislocations are not formed in the silicon wafer in the device fabrication process when the thermal stress τ is less than the critical shear stress τcri.
摘要:
A method of manufacturing an epitaxial wafer, including a silicon substrate having a surface sliced from single-crystalline silicon and a silicon epitaxial layer deposited on the surface of the silicon substrate, includes an oxygen concentration controlling heat treatment process in which a heat treatment of the epitaxial layer is performed under a non-oxidizing atmosphere after the epitaxial growth such that an oxygen concentration of the surface of the silicon epitaxial layer is set to 1.0×1017 to 12×1017 atoms/cm3 (ASTM F-121, 1979).
摘要翻译:一种制造外延晶片的方法,包括具有从单晶硅切割的表面的硅衬底和沉积在硅衬底的表面上的硅外延层的硅衬底,包括氧浓度控制热处理工艺,其中, 在外延生长后,在非氧化性气氛下进行外延层,使得硅外延层的表面的氧浓度为1.0×10 17〜12×10 17原子/ cm 3(ASTM F-121,1979)。
摘要:
A manufacturing method allows growth of a group III nitride semiconductor layer on a Si substrate with an AlN buffer layer interposed between same, so as to suppress group III material from diffusing into the Si substrate. The group III nitride semiconductor substrate manufacturing method includes: a step of forming an AlN coating on the inside of a furnace; steps of installing an Si substrate in the furnace covered with the AlN coating and forming an AlN buffer layer on the Si substrate; and a step of forming a group III nitride semiconductor layer on the AN buffer layer.
摘要:
A method of manufacturing an epitaxial silicon wafer that includes growing a silicon single crystal ingot doped with a boron concentration of 2.7×1017 atoms/cm3 or more and 1.3×1019 atoms/cm3 or less by the CZ method; producing a silicon substrate by processing the silicon single crystal ingot; and forming an epitaxial layer on a surface of the silicon substrate. During growing of the silicon single crystal ingot, the pull-up conditions of the silicon single crystal ingot are controlled so that the boron concentration Y (atoms/cm3) and an initial oxygen concentration X (×1017 atoms/cm3) satisfy the expression X≤−4.3×10−19Y+16.3.