Abstract:
This invention provides a multi-pin semiconductor device as a low-cost flip-chip BGA. In the flip-chip BGA, a plurality of signal bonding electrodes in a peripheral area of the upper surface of a multilayer wiring substrate are separated into inner and outer ones and a plurality of signal through holes coupled to a plurality of signal wirings drawn inside are located between a plurality of rows of signal bonding electrodes and a central region where a plurality of bonding electrodes for core power supply are located so that the chip pad pitch can be decreased and the cost of the BGA can be reduced without an increase in the number of layers in the multilayer wiring substrate.
Abstract:
This invention provides a multi-pin semiconductor device as a low-cost flip-chip BGA. In the flip-chip BGA, a plurality of signal bonding electrodes in a peripheral area of the upper surface of a multilayer wiring substrate are separated into inner and outer ones and a plurality of signal through holes coupled to a plurality of signal wirings drawn inside are located between a plurality of rows of signal bonding electrodes and a central region where a plurality of bonding electrodes for core power supply are located so that the chip pad pitch can be decreased and the cost of the BGA can be reduced without an increase in the number of layers in the multilayer wiring substrate.
Abstract:
A characteristic of a semiconductor device having a back electrode including an Au—Sb alloy is improved. The semiconductor device has a semiconductor substrate and the back electrode including the Au—Sb alloy layer. The back electrode is formed on the semiconductor substrate. The Sb concentration in the Au—Sb alloy layer is equal to or greater than 15 wt %, and equal to or less than 37 wt %. The thickness of the Au—Sb alloy layer is equal to or larger than 20 nm, and equal to or less than 45 nm.
Abstract:
This invention provides a multi-pin semiconductor device as a low-cost flip-chip BGA. In the flip-chip BGA, a plurality of signal bonding electrodes in a peripheral area of the upper surface of a multilayer wiring substrate are separated into inner and outer ones and a plurality of signal through holes coupled to a plurality of signal wirings drawn inside are located between a plurality of rows of signal bonding electrodes and a central region where a plurality of bonding electrodes for core power supply are located so that the chip pad pitch can be decreased and the cost of the BGA can be reduced without an increase in the number of layers in the multilayer wiring substrate.
Abstract:
This invention provides a multi-pin semiconductor device as a low-cost flip-chip BGA. In the flip-chip BGA, a plurality of signal bonding electrodes in a peripheral area of the upper surface of a multilayer wiring substrate are separated into inner and outer ones and a plurality of signal through holes coupled to a plurality of signal wirings drawn inside are located between a plurality of rows of signal bonding electrodes and a central region where a plurality of bonding electrodes for core power supply are located so that the chip pad pitch can be decreased and the cost of the BGA can be reduced without an increase in the number of layers in the multilayer wiring substrate.
Abstract:
A technique capable of improving reliability of a semiconductor device is provided. In the present invention, as a wiring board on which a semiconductor chip is mounted, a build-up wiring board is not used but a through wiring board THWB is used. In this manner, in the present invention, the through wiring board formed of only a core layer is used, so that it is not required to consider a difference in thermal expansion coefficient between a build-up layer and the core layer, and besides, it is not required either to consider the electrical disconnection of a fine via formed in the build-up layer because the build-up layer does not exist. As a result, according to the present invention, the reliability of the semiconductor device can be improved while a cost is reduced.
Abstract:
This invention provides a multi-pin semiconductor device as a low-cost flip-chip BGA. In the flip-chip BGA, a plurality of signal bonding electrodes in a peripheral area of the upper surface of a multilayer wiring substrate are separated into inner and outer ones and a plurality of signal through holes coupled to a plurality of signal wirings drawn inside are located between a plurality of rows of signal bonding electrodes and a central region where a plurality of bonding electrodes for core power supply are located so that the chip pad pitch can be decreased and the cost of the BGA can be reduced without an increase in the number of layers in the multilayer wiring substrate.
Abstract:
To improve coupling reliability in flip chip bonding of a semiconductor device. By using, in the fabrication of a semiconductor device, a wiring substrate in which a wiring that crosses an opening area of a solder resist film on the upper surface of the wiring substrate has, on one side of the wiring, a bump electrode and, on the other side, a plurality of wide-width portions having no bump electrode thereon, a solder on the wiring can be dispersed to each of the wide-width portions during reflow treatment in a solder precoating step. Such a configuration makes it possible to reduce a difference in height between the solder on each of terminals and the solder on each of the wide-width portions and to enhance the coupling reliability in flip chip bonding.
Abstract:
A semiconductor device includes lands having an NSMD (non-solder mask defined) structure for mounting thereon solder balls placed in an inner area of a chip mounting area. The lands for mounting thereon solder balls are placed in an area of the back surface of a through-hole wiring board overlapping with a chip mounting area in a plan view. The semiconductor device is mounted on a mounting substrate with the balls.
Abstract:
A compact electronic device as a constituent element of a wireless communication system using a sensor. A first feature of the device is that a first semiconductor chip is bare-chip-mounted over a front surface of a first wiring board in the form of a chip and a second semiconductor chip is bare-chip-mounted over a second wiring board in the form of a chip. A second feature is that a wireless communication unit and a data processing unit which configure a module are separately mounted. A third feature is that the first and second wiring boards are stacked in the board thickness direction to make up the module (electronic device).