Abstract:
A system and method for a semiconductor wafer carrier is disclosed. An embodiment comprises a semiconductor wafer carrier wherein conductive dopants are implanted into the carrier in order to amplify the coulombic forces between an electrostatic chuck and the carrier to compensate for reduced forces that result from thinner semiconductor wafers. Another embodiment forms conductive layers and vias within the carrier instead of implanting conductive dopants.
Abstract:
Structure and methods of forming stacked semiconductor chips are described. In one embodiment, a method of forming a semiconductor chip includes forming an opening for a through substrate via from a top surface of a first substrate. The sidewalls of the opening are lined with an insulating liner and the opened filled with a conductive fill material. The first substrate is etched from an opposite bottom surface to form a protrusion, the protrusion being covered with the insulating liner. A resist layer is deposited around the protrusion to expose a portion of the insulating liner. The exposed insulating liner is etched to form a sidewall spacer along the protrusion.
Abstract:
Structure and methods of forming stacked semiconductor chips are described. In one embodiment, a method of forming a semiconductor chip includes forming an opening for a through substrate via from a top surface of a first substrate. The sidewalls of the opening are lined with an insulating liner and the opened filled with a conductive fill material. The first substrate is etched from an opposite bottom surface to form a protrusion, the protrusion being covered with the insulating liner. A resist layer is deposited around the protrusion to expose a portion of the insulating liner. The exposed insulating liner is etched to form a sidewall spacer along the protrusion.
Abstract:
A system and a method for protecting semiconductor wafers is disclosed. A preferred embodiment comprises a carrier with a central region and an exterior region. The exterior region preferably has a thickness that is greater than the central region, to form a cavity in the carrier. An adhesive is preferably placed into the cavity, and a semiconductor wafer is placed onto the adhesive. The edges of the semiconductor wafer are protected by the raised exterior region as well as the displaced adhesive that at least partially fills the area between the semiconductor wafer and the exterior region of the carrier.
Abstract:
A system and a method for protecting semiconductor wafers is disclosed. A preferred embodiment comprises a carrier with a central region and an exterior region. The exterior region preferably has a thickness that is greater than the central region, to form a cavity in the carrier. An adhesive is preferably placed into the cavity, and a semiconductor wafer is placed onto the adhesive. The edges of the semiconductor wafer are protected by the raised exterior region as well as the displaced adhesive that at least partially fills the area between the semiconductor wafer and the exterior region of the carrier.
Abstract:
A system and method for a semiconductor wafer carrier is disclosed. An embodiment comprises a semiconductor wafer carrier wherein conductive dopants are implanted into the carrier in order to amplify the coulombic forces between an electrostatic chuck and the carrier to compensate for reduced forces that result from thinner semiconductor wafers. Another embodiment forms conductive layers and vias within the carrier instead of implanting conductive dopants.
Abstract:
A device includes an interposer, which includes a substrate having a top surface. An interconnect structure is formed over the top surface of the substrate, wherein the interconnect structure includes at least one dielectric layer, and metal features in the at least one dielectric layer. A plurality of through-substrate vias (TSVs) is in the substrate and electrically coupled to the interconnect structure. A first die is over and bonded onto the interposer. A second die is bonded onto the interposer, wherein the second die is under the interconnect structure.
Abstract:
A device includes a work piece including a metal bump; and a dielectric layer having a portion directly over the metal bump. The metal bump and a surface of the portion of the dielectric layer form an interface. A metal finish is formed over and contacting the metal bump. The metal finish extends from over the dielectric layer to below the interface.
Abstract:
An integrated circuit structure includes a semiconductor substrate having a front surface and a back surface; a conductive via passing through the semiconductor substrate; and a metal feature on the back surface of the semiconductor substrate. The metal feature includes a metal pad overlying and contacting the conductive via, and a metal line over the conductive via. The metal line includes a dual damascene structure. The integrated circuit structure further includes a bump overlying the metal line.
Abstract:
An integrated circuit includes a substrate and a first metal-insulator-metal (MIM) capacitor disposed over the substrate. The MIM capacitor includes a first metallic capacitor plate disposed over the substrate. At least one first insulator layer is disposed over the first metallic capacitor plate. A second metallic capacitor plate is disposed over the at least one first insulator layer. At least one first dielectric layer is disposed over the substrate. At least a portion of the at least one first dielectric layer is disposed between the first metallic capacitor plate and the at least one first insulator layer.