Abstract:
A structure of an electrochemical unit includes a substrate, a first metal layer disposed on the substrate, and an array of electrochemical cells disposed on the first metal layer. The array of the electrochemical cells includes a plurality of electrochemical cells. Each of the electrochemical cells includes the first metal layer disposed on the substrate, a first electrode disposed on the first metal layer, a polymer layer disposed on the substrate and adjacent to the first metal layer and the first electrode. A second metal layer is disposed on the polymer layer, and a second electrode is disposed on the second metal layer. A pore is constituted between the polymer layers of every the two electrochemical cells. A cavity located above the first electrode is defined between every the two electrochemical cells, wherein the cavity is communicated with the pore.
Abstract:
A semiconductor structure including a substrate, a conductive layer, and a semiconductor device is provided. The substrate includes a first surface, a second surface opposite to the first surface, at least one insulating vacancy extending from the first surface toward the second surface, and a through hole passing through the substrate. The conductive layer fills in the through hole. The semiconductor device is disposed on the second surface and is electrically connected to the conductive layer, and the at least one insulating vacancy is distributed corresponding to the semiconductor device.
Abstract:
A ferroelectric memory includes a first electrode, a second electrode opposite to the first electrode, a ferroelectric composite layer disposed between the first electrode and the second electrode, and a first insulating layer disposed on one side of the ferroelectric composite layer. The ferroelectric composite layer includes a first electrode layer, a second electrode layer, a ferroelectric layer and an antiferroelectric layer. The first electrode layer is opposite to the second electrode layer, and the ferroelectric layer and the antiferroelectric layer are disposed between the first electrode layer and the second electrode layer.
Abstract:
A liquid-sensing apparatus includes a substrate, partitions, and independent sensors. The partitions are disposed on the substrate for separating several housing spaces in order to respectively house a to-be-detected liquid, wherein each of the housing spaces has a bottom, a closed sidewall, and an open top, and thus the to-be-detected liquid may be dripped from the top of the housing space. The independent sensors are respectively formed at the bottom of different housing spaces, wherein the independent sensors respectively include different sensing material layers, and surfaces of the different sensing material layers have nanoholes.
Abstract:
The disclosure provides a sensing device including a supporting member, a thermal resistance portion, a sensing unit and a heating unit. The supporting member has a supporting surface. The thermal resistance portion is located within the supporting member, wherein a thermal conductivity of the thermal resistance portion is less than a thermal conductivity of the supporting member. The sensing unit is disposed on the supporting surface. The heating unit is disposed on the supporting surface, wherein the heating unit is configured to heat the sensing unit, and an orthogonal projection of the heating unit on the supporting surface overlaps an orthogonal projection of the thermal resistance portion on the supporting surface. In addition, the disclosure also provides a method for manufacturing the sensing device.
Abstract:
A bonding structure including a first substrate, a second substrate, and an adhesive layer is provided. The first substrate has a plurality of first trenches. The adhesive layer is located between the first substrate and the second substrate, and the first trenches are filled with the adhesive layer.
Abstract:
The disclosure provides a TSV substrate structure and the stacked assembly of a plurality of the substrate structures, the TSV substrate structure including: a substrate comprising a first surface, a corresponding second surface, and a TSV communicating the first surface with the second surface through the substrate; and a conductor unit completely filling the TSV, the conductor unit comprising a conductor body which has a first and a second ends corresponding to the first and second surfaces of the substrate, respectively.
Abstract:
A structure of an electrochemical unit includes a substrate, a first metal layer disposed on the substrate, and an array of electrochemical cells disposed on the first metal layer. The array of the electrochemical cells includes a plurality of electrochemical cells. Each of the electrochemical cells includes the first metal layer disposed on the substrate, a first electrode disposed on the first metal layer, a polymer layer disposed on the substrate and adjacent to the first metal layer and the first electrode. A second metal layer is disposed on the polymer layer, and a second electrode is disposed on the second metal layer. A pore is constituted between the polymer layers of every the two electrochemical cells. A cavity located above the first electrode is defined between every the two electrochemical cells, wherein the cavity is communicated with the pore.
Abstract:
A bonding structure including a first substrate, a second substrate, and an adhesive layer is provided. The first substrate has a plurality of first trenches. The adhesive layer is located between the first substrate and the second substrate, and the first trenches are filled with the adhesive layer.