Abstract:
The disclosure provides a sensing device including a supporting member, a thermal resistance portion, a sensing unit and a heating unit. The supporting member has a supporting surface. The thermal resistance portion is located within the supporting member, wherein a thermal conductivity of the thermal resistance portion is less than a thermal conductivity of the supporting member. The sensing unit is disposed on the supporting surface. The heating unit is disposed on the supporting surface, wherein the heating unit is configured to heat the sensing unit, and an orthogonal projection of the heating unit on the supporting surface overlaps an orthogonal projection of the thermal resistance portion on the supporting surface. In addition, the disclosure also provides a method for manufacturing the sensing device.
Abstract:
A method of manufacturing a sensor device is provided. In the method, sensing electrodes are formed on a substrate, a sensing material layer is formed on the sensing electrodes. The sensing material layer is etched to form a first nanowire sensing region, a second nanowire sensing region and a third nanowire sensing region respectively between every two sensing electrodes of the sensing electrodes. A dielectric layer is formed to cover the first nanowire sensing region, the second nanowire sensing region and the third nanowire sensing region, and the first nanowire sensing region and the third nanowire sensing region are exposed.
Abstract:
A gas sensing apparatus including a gas sensor, a gas determining circuit and a gas database is provided. The gas sensor includes at least two nanowire sensors. The gas sensor is configured to sense multiple gases and output a plurality of sensing signals. The gas determining circuit is coupled to the gas sensor. The gas determining circuit is configured to receive the sensing signals and determine types of the gases according to reference data and the sensing signals. The gas database is coupled to the gas determining circuit. The gas database stores the reference data and outputs the reference data to the gas determining circuit. Each of the nanowire sensors includes at least one nanowire. Structural properties of the nanowires are different.
Abstract:
A readout circuit for a sensor and a readout method thereof are provided. The readout circuit includes a reference circuit, a compensated circuit, and a signal processing circuit. The reference circuit provides a direct current (DC) signal. The compensated circuit is coupled to the reference circuit. The compensated circuit obtains an analog sensing signal of the sensor, obtains the DC signal from the reference circuit, and provides a compensated signal according to the analog sensing signal and the DC signal. The signal processing circuit is coupled to the compensated circuit. The signal processing circuit processes the compensated signal to convert the compensated signal into a digital sensing signal. The compensated circuit subtracts the DC signal from the analog sensing signal to provide the compensated signal.
Abstract:
A sensor device and a method of manufacturing the same are provided. The sensor device includes a substrate, a plurality of sensing electrodes, a humidity nanowire sensor, a temperature nanowire sensor, and a gas nanowire sensor. The sensing electrodes are formed on the substrate, and the humidity, the temperature and the gas nanowire sensors are also on the substrate. The humidity nanowire sensor includes an exposed first nanowire sensing region, the temperature nanowire sensor includes a second nanowire sensing region, and the gas nanowire sensor includes a third nanowire sensing region.
Abstract:
A gas sensing apparatus including a gas sensor, a gas determining circuit and a gas database is provided. The gas sensor includes at least two nanowire sensors. The gas sensor is configured to sense multiple gases and output a plurality of sensing signals. The gas determining circuit is coupled to the gas sensor. The gas determining circuit is configured to receive the sensing signals and determine types of the gases according to reference data and the sensing signals. The gas database is coupled to the gas determining circuit. The gas database stores the reference data and outputs the reference data to the gas determining circuit. Each of the nanowire sensors includes at least one nanowire. Structural properties of the nanowires are different.
Abstract:
A bonding structure including a first substrate, a second substrate, and an adhesive layer is provided. The first substrate has a plurality of first trenches. The adhesive layer is located between the first substrate and the second substrate, and the first trenches are filled with the adhesive layer.
Abstract:
A bonding structure including a first substrate, a second substrate, and an adhesive layer is provided. The first substrate has a plurality of first trenches. The adhesive layer is located between the first substrate and the second substrate, and the first trenches are filled with the adhesive layer.
Abstract:
A method of manufacturing a sensor device is provided. In the method, sensing electrodes are formed on a substrate, a sensing material layer is formed on the sensing electrodes. The sensing material layer is etched to form a first nanowire sensing region, a second nanowire sensing region and a third nanowire sensing region respectively between every two sensing electrodes of the sensing electrodes. A dielectric layer is formed to cover the first nanowire sensing region, the second nanowire sensing region and the third nanowire sensing region, and the first nanowire sensing region and the third nanowire sensing region are exposed.
Abstract:
A readout circuit for a sensor and a readout method thereof are provided. The readout circuit includes a reference circuit, a compensated circuit, and a signal processing circuit. The reference circuit provides a direct current (DC) signal. The compensated circuit is coupled to the reference circuit. The compensated circuit obtains an analog sensing signal of the sensor, obtains the DC signal from the reference circuit, and provides a compensated signal according to the analog sensing signal and the DC signal. The signal processing circuit is coupled to the compensated circuit. The signal processing circuit processes the compensated signal to convert the compensated signal into a digital sensing signal. The compensated circuit subtracts the DC signal from the analog sensing signal to provide the compensated signal.