摘要:
A semiconductor device includes a semiconductor substrate in which a semiconductor element is formed, an electrode structure of a first semiconductor chip which is provided on a first surface of an n+-type semiconductor layer of the semiconductor substrate to be electrically connected to the semiconductor element and in which a first Al metal layer composed of Al or Al alloy, a Cu diffusion-prevention layer, a second Al metal layer composed of Al or Al alloy, and a Ni layer are formed in this order, and a conductive member which is bonded to the electrode structure of the first semiconductor chip via a sintered copper layer disposed on a surface of the Ni layer. In this semiconductor device, a crystal plane orientation of Al crystal grains on a surface of the second Al metal layer is principally on (110) plane.
摘要:
The invention provides an inexpensive flywheel diode having a low power loss. A semiconductor substrate side of a gate electrode provided on a surface of an anode electrode side of a semiconductor substrate including silicon is surrounded by a p layer, an n layer, and a p layer via a gate insulating film. The anode electrode is in contact with the p layer with a low resistance, and is also in contact with the n layer or the p layer, and a Schottky diode is formed between the anode electrode and the n layer or the p layer.
摘要:
A semiconductor device includes a drift layer of a first conductivity type; and anode layer of a second conductivity type formed on a first main surface side of the drift layer; a field stop layer of the first conductivity type that is formed on a second main surface side of the drift layer and has a higher impurity concentration than the drift layer; and a cathode layer of the first conductivity type that has a higher impurity concentration than the field stop layer. A defect layer for carrier lifetime control is formed by light ion irradiation. In the defect layer, the region from the concentration peak of the light ions to the half-value width ΔLp of the light ion concentration profile does not overlap the depletion layer spreading in the drift layer, and does not overlap the location in the field stop layer of the first conductivity type.
摘要:
A semiconductor device including: a semiconductor element; and a first electrode formed on a first surface of the semiconductor element. The first electrode has a stacked structure including a first electroless Ni plating layer. The first electroless Ni plating layer contains nickel (Ni) and phosphorus (P) as a composition. A phosphorus (P) concentration of the first electroless Ni plating layer is 2.5 wt % to 6 wt % inclusive, and a crystallization rate of Ni3P in the first electroless Ni plating layer is 0% to 20% inclusive.
摘要:
A termination structure in which a semiconductor active region is surrounded with a guard ring and capable of preventing corrosion of a metal layer connected to the guard ring includes: an active region and a guard ring region surrounding the active region. A guard ring is formed on the semiconductor substrate, and an interlayer insulating film is formed on the semiconductor substrate so as to cover the guard ring. A field plate is disposed on the interlayer insulating film and is electrically connected to the guard ring via a contact penetrating the interlayer insulating film. A protective film covers the field plate, which has a laminated structure including a first metal in contact with the guard ring and a second metal which is disposed in contact with the first metal and has a lower standard potential than the first metal.
摘要:
A current switching semiconductor device to be used in a power conversion device achieves both a low conduction loss and a low switching loss. The semiconductor device includes the IGBT in which only Gc gates are provided and an impurity concentration of the p type collector layer is high, and the IGBT in which the Gs gates and the Gc gates are provided and an impurity concentration of the p type collector layer is low. When the semiconductor device is turned off, the semiconductor device transitions from a state in which a voltage lower than a threshold voltage is applied to both the Gs gates and the Gc gates to a state in which a voltage equal to or higher than the threshold voltage is applied to the Gc gates prior to the Gs gates.
摘要:
Provided is a semiconductor device in which, in a case where a metallic plate (a conductive member) is bonded by being sintered to a semiconductor chip having an IGBT gate structure, an excess stress is less likely to be generated in a gate wiring section of the semiconductor chip even when pressure is applied in a sinter bonding process, so that a characteristic failure is reduced. The semiconductor device according to the present invention is characterized by: being provided with a semiconductor chip having a gate structure represented by an IGBT; including first gate wiring and second gate wiring formed on the surface of the semiconductor chip; and including an emitter electrode disposed so as to cover the first gate wiring and a sintered layer disposed above the emitter electrode, wherein a multilayer structure formed by including at least the emitter electrode and the sintered layer on the surface of the semiconductor chip continuously exists over a range including an emitter electrode connecting contact and gate wiring regions.
摘要:
The present invention provides: a semiconductor device which has higher resistance to bias at high temperatures and high humidities than ever before, while achieving good connection between a field limiting layer and a field plate; and a power conversion device which uses this semiconductor device. A semiconductor device according to the present invention is characterized by comprising a floating field limiting layer that is provided in a termination region and a field plate that is electrically connected to the field limiting layer, and is also characterized in that: the field plate is formed of a polysilicon; the field plate and the field limiting layer are connected to each other via an Al electrode; and the connection between the field limiting layer and the Al electrode and the connection between the field plate and the Al electrode are established at different contacts.
摘要:
An anode electrode and a cathode electrode formed on a silicon semiconductor substrate, p-type layer formed next to the anode electrode, an n-type layer formed next to the cathode electrode by a V-group element being diffused, an n− layer formed between the p-type layer and the n-type layer, and an n-buffer layer formed between the n− layer and the n-type layer and containing oxygen are provided and an oxygen concentration in an area of a width of at least 30 μm from a surface on a side of the n-type layer of the cathode electrode toward the anode electrode is set to 1×1017 cm−3 or more and also the oxygen concentration of the n− layer in a position in contact with the p-type layer is set to less than 3×1017 cm−3.