SEMICONDUCTOR DEVICE AND POWER CONVERSION DEVICE

    公开(公告)号:US20210367028A1

    公开(公告)日:2021-11-25

    申请号:US17241631

    申请日:2021-04-27

    摘要: A termination structure in which a semiconductor active region is surrounded with a guard ring and capable of preventing corrosion of a metal layer connected to the guard ring includes: an active region and a guard ring region surrounding the active region. A guard ring is formed on the semiconductor substrate, and an interlayer insulating film is formed on the semiconductor substrate so as to cover the guard ring. A field plate is disposed on the interlayer insulating film and is electrically connected to the guard ring via a contact penetrating the interlayer insulating film. A protective film covers the field plate, which has a laminated structure including a first metal in contact with the guard ring and a second metal which is disposed in contact with the first metal and has a lower standard potential than the first metal.

    Semiconductor Device and Power Conversion Device

    公开(公告)号:US20210091217A1

    公开(公告)日:2021-03-25

    申请号:US16971547

    申请日:2019-02-01

    摘要: A current switching semiconductor device to be used in a power conversion device achieves both a low conduction loss and a low switching loss. The semiconductor device includes the IGBT in which only Gc gates are provided and an impurity concentration of the p type collector layer is high, and the IGBT in which the Gs gates and the Gc gates are provided and an impurity concentration of the p type collector layer is low. When the semiconductor device is turned off, the semiconductor device transitions from a state in which a voltage lower than a threshold voltage is applied to both the Gs gates and the Gc gates to a state in which a voltage equal to or higher than the threshold voltage is applied to the Gc gates prior to the Gs gates.

    Semiconductor Device and Power Conversion Apparatus

    公开(公告)号:US20200006301A1

    公开(公告)日:2020-01-02

    申请号:US16465429

    申请日:2017-12-25

    摘要: Provided is a semiconductor device in which, in a case where a metallic plate (a conductive member) is bonded by being sintered to a semiconductor chip having an IGBT gate structure, an excess stress is less likely to be generated in a gate wiring section of the semiconductor chip even when pressure is applied in a sinter bonding process, so that a characteristic failure is reduced. The semiconductor device according to the present invention is characterized by: being provided with a semiconductor chip having a gate structure represented by an IGBT; including first gate wiring and second gate wiring formed on the surface of the semiconductor chip; and including an emitter electrode disposed so as to cover the first gate wiring and a sintered layer disposed above the emitter electrode, wherein a multilayer structure formed by including at least the emitter electrode and the sintered layer on the surface of the semiconductor chip continuously exists over a range including an emitter electrode connecting contact and gate wiring regions.

    SEMICONDUCTOR DEVICE AND POWER CONVERSION DEVICE

    公开(公告)号:US20240355888A1

    公开(公告)日:2024-10-24

    申请号:US18683523

    申请日:2022-11-11

    摘要: The present invention provides: a semiconductor device which has higher resistance to bias at high temperatures and high humidities than ever before, while achieving good connection between a field limiting layer and a field plate; and a power conversion device which uses this semiconductor device. A semiconductor device according to the present invention is characterized by comprising a floating field limiting layer that is provided in a termination region and a field plate that is electrically connected to the field limiting layer, and is also characterized in that: the field plate is formed of a polysilicon; the field plate and the field limiting layer are connected to each other via an Al electrode; and the connection between the field limiting layer and the Al electrode and the connection between the field plate and the Al electrode are established at different contacts.