摘要:
Methods of forming metallic tungsten films selectively on a conductive surface relative to a dielectric surface are described. A substrate is exposed to a first process condition to deposit a tungsten-containing film that is substrate free of tungsten metal. The tungsten-containing film is then converted to a metallic tungsten film by exposure to a second process condition.
摘要:
Methods and apparatus for forming a reverse selective etch stop layer are disclosed. Some embodiments of the disclosure provide interconnects with lower resistance than methods which utilize non-selective (e.g., blanket) etch stop layers. Some embodiments of the disclosure utilize reverse selective etch stop layers within a subtractive etch scheme. Some embodiments of the disclosure selectively deposit the etch stop layer by passivating the surface of the metal material.
摘要:
Embodiments of the present disclosure generally relate to methods of cleaning a structure and methods of depositing a capping layer in a structure. The method of cleaning a structure includes suppling a cleaning gas, including a first gas including nitrogen (N) and a second gas including fluorine (F), to a bottom surface of a structure. The cleaning gas removes unwanted metal oxide and etch residue from the bottom surface of the structure. The method of depositing a capping layer includes depositing the capping layer over the bottom surface of the structure. The methods described herein reduce the amount of unwanted metal oxides and residue, which improves adhesion of deposited capping layers.
摘要:
Embodiments herein provide for oxygen based treatment of low-k dielectric layers deposited using a flowable chemical vapor deposition (FCVD) process. Oxygen based treatment of the FCVD deposited low-k dielectric layers desirably increases the Ebd to capacitance and reliability of the devices while removing voids. Embodiments include methods and apparatus for making a semiconductor device including: etching a metal layer disposed atop a substrate to form one or more metal lines having a top surface, a first side, and a second side; depositing a passivation layer atop the top surface, the first side, and the second side under conditions sufficient to reduce or eliminate oxygen contact with the one or more metal lines; depositing a flowable layer of low-k dielectric material atop the passivation layer in a thickness sufficient to cover the one or more metal lines; and contacting the flowable layer of low-k dielectric material with oxygen under conditions sufficient to anneal and increase a density of the low-k dielectric material.
摘要:
Methods for pre-cleaning substrates having metal and dielectric surfaces are described. The substrate is exposed to a strong reductant to remove contaminants from the metal surface and damage the dielectric surface. The substrate is then exposed to an oxidation process to repair the damage to the dielectric surface and oxidize the metal surface. The substrate is then exposed to a weak reductant to reduce the metal oxide to a pure metal surface without substantially affecting the dielectric surface. Processing tools and computer readable media for practicing the method are also described.
摘要:
Methods and apparatus for processing a substrate and etching a nickel silicide layer are provided herein. In some embodiments, a method of etching a nickel silicide film in a semiconductor device include: contacting a nickel silicide film disposed on a substrate in a process chamber with an etching gas sufficient to form one or more soluble or volatile products in order to reduce or eliminate re-deposition of products formed from the nickel silicide film upon the nickel silicide film.
摘要:
The invention includes generating a plasma from a process gas for etching copper on a substrate; providing DC bias pulses to the substrate; exposing at least one of the plasma and the substrate to UV light while the DC bias pulses are provided to the substrate. Numerous other aspects are provided.
摘要:
A method of forming features in a dielectric layer is described. A via, trench or a dual-damascene structure may be present in the dielectric layer prior to depositing a conformal aluminum nitride layer. The conformal aluminum nitride layer is configured to serve as a barrier to prevent diffusion across the barrier. The methods of forming the aluminum nitride layer involve the alternating exposure to two precursor treatments (like ALD) to achieve high conformality. The high conformality of the aluminum nitride barrier layer enables the thickness to be reduced and the effective conductivity of the subsequent gapfill metal layer to be increased.
摘要:
An apparatus configured to remove metal etch byproducts from the surface of substrates and from the interior of a substrate processing chamber. A plasma is used in combination with a solid state light source, such as an LED, to desorb metal etch byproducts. The desorbed byproducts may then be removed from the chamber.
摘要:
In one aspect, a plasma etching apparatus is disclosed. The plasma etching apparatus includes a chamber body having a process chamber adapted to receive a substrate, an RF source coupled to an RF electrode, a pedestal located in the processing chamber and adapted to support a substrate, a plurality of conductive pins adapted to contact and support the substrate during processing, and a DC bias source electrically coupled to the plurality of conductive pins. Etching methods are provided, as are numerous other aspects.