Abstract:
A metal gate structure comprises a metal layer partially filling a trench of the metal gate structure. The metal layer comprises a first metal sidewall, a second metal sidewall and a metal bottom layer. By employing an uneven protection layer during an etching back process, the thickness of the first metal sidewall is less than the thickness of the metal bottom layer and the thickness of the second metal sidewall is less than the thickness of the metal bottom layer. The thin sidewalls allow extra space for subsequent metal-fill processes.
Abstract:
A metal gate structure comprises a metal layer partially filling a trench of the metal gate structure. The metal layer comprises a first metal sidewall, a second metal sidewall and a metal bottom layer. By employing an uneven protection layer during an etching back process, the thickness of the first metal sidewall is less than the thickness of the metal bottom layer and the thickness of the second metal sidewall is less than the thickness of the metal bottom layer. The thin sidewalls allow extra space for subsequent metal-fill processes.
Abstract:
An apparatus includes a first device. The first device includes a first projection and a first gate structure, the first projection extending upwardly from a substrate and having a first channel region therein, and the first gate structure engaging the first projection adjacent the first channel region. The first structure includes an opening over the first channel region, and a conformal, pure metal with a low resistivity disposed in the opening. The apparatus also includes a second device that includes a second projection and a second gate structure, the second projection extending upwardly from the substrate and having a second channel region therein, and the second gate structure engaging the second projection adjacent the second channel region. The second structure includes a silicide disposed over the second channel region, wherein the silicide includes a metal that is the same metal disposed in the opening.
Abstract:
A method includes providing a semiconductor substrate having a gate trench and depositing a metal layer, using a physical vapor deposition (PVD) process, over the substrate to partially fill the trench. The metal layer includes a bottom portion and a sidewall portion that is thinner than the bottom portion. The method also includes forming a coating layer on the metal layer, etching back the coating layer such that a portion of the coating layer protects a portion of the metal layer within the trench, and removing the unprotected portion of the metal layer. A different aspect involves a semiconductor device that includes a gate that includes a trench having a top surface, and a metal layer formed over the trench, wherein the metal layer includes a sidewall portion and a bottom portion, and wherein the sidewall portion is thinner than the bottom portion.
Abstract:
A semiconductor package configured to attain a thin profile and low moisture sensitivity. Packages of this invention can include a semiconductor die mounted on a die attachment site of a leadframe and further connected with a plurality of elongate I/O leads arranged about the die attach pad and extending in said first direction. The leadframe having an “up-set” bonding pad arranged with a bonding support for supporting a plurality of wire bonds and a large mold flow aperture in the up-set bonding pad. The package encapsulated in a mold material that surrounds the bonding support and flows through the large mold flow aperture to establish well supported wire bonds such that the package has low moisture sensitivity.
Abstract:
A lead frame and package construction configured to attain a thin profile and low moisture sensitivity. Lead frames of this invention may include a die attach pad having a die attachment site and an elongate ground lead that extends from the die attach pad. The lead frame includes a plurality of elongate I/O leads arranged about the die attach pad and extending away from the die attach pad in at least two directions. An inventive lead frame features “up-set” bonding pads electrically connected with the die attach pad and arranged with a bonding surface for supporting a plurality of wire bonds. The bonding surfaces also constructed to define at least one mold flow aperture for each up-set bonding pad. A package incorporating the lead frame is further disclosed such that the package includes an encapsulant that surrounds the bonding support and flows through the mold flow aperture to establish well supported wire bonds such that the package has low moisture sensitivity. Such packages can be constructed in single inline configuration, dual inline configuration, quad package configurations.
Abstract:
The present disclosure provides a method of fabricating a semiconductor device that includes providing a substrate having a first region and a second region, forming first and second gate stacks in the first and second regions, respectively, the first gate stack including a first dummy gate and the second gate stack including a second dummy gate, removing the first dummy gate in the first gate stack thereby forming a first trench and removing the second dummy gate in the second gate stack thereby forming a second trench, forming a first metal layer in the first trench and in the second trench, removing at least a portion of the first metal layer in the first trench, forming a second metal layer in the remainder of the first trench and in the remainder of the second trench, reflowing the second metal layer, and performing a chemical mechanical polishing (CMP).
Abstract:
An n-FET and a p-FET each have elevated source/drain structures. Optionally, the p-FET elevated-SOURCE/DRAIN structure is epitaxially grown from a p-FET recess formed in the substrate. Optionally, the n-FET elevated-SOURCE/DRAIN structure is epitaxially grown from an n-FET recess formed in the substrate. The n-FET and p-FET elevated-source/drain structures are both silicided, even though the structures may have different materials and/or different structure heights. At least a thermal treatment portion of the source/drain structure siliciding is performed simultaneously for the n-FET and p-FET elevated source/drain structures. Also, the p-FET gate electrode, the n-FET gate electrode, or both, may optionally be silicided simultaneously (same metal and/or same thermal treatment step) with the n-FET and p-FET elevated-source/drain structures, respectively; even though the gate electrodes may have different materials, different silicide metal, and/or different electrode heights. The silicides formed on n-FET and p-FET elevated-source/drain structures preferably do not extend below a top surface of the substrate more than about 250 angstroms; and the structure heights may be selected to provide this.
Abstract:
In one embodiment, a semiconductor package includes a clip frame with a first clip having a first support structure, a first lever, and a first contact portion, which is disposed on a front side of the semiconductor package. The first support structure is adjacent an opposite back side of the semiconductor package. The first lever joins the first contact portion and the first support structure. A first die is disposed over the first support structure of the first clip. The first die has a first contact pad on the front side of the semiconductor package. An encapsulant material surrounds the first die and the first clip.
Abstract:
The invention relates to integrated circuit fabrication, and more particularly to a Field Effect Transistor with a low resistance metal gate electrode. An exemplary structure for a gate electrode for a Field Effect Transistor comprises a lower portion formed of a first metal material having a recess and a first resistance; and an upper portion formed of a second metal material having a protrusion and a second resistance, wherein the protrusion extends into the recess, wherein the second resistance is lower than the first resistance.