Abstract:
A treated conductive element is provided. A conductive element can be treated by depositing either a reactive metal or a very thin layer of material on the conductive element. The reactive metal (or very thin layer of material) would typically be sandwiched between the conductive element and an electrode. The structure additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays.
Abstract:
A memory using mixed valence conductive oxides is disclosed. The memory includes a mixed valence conductive oxide that is less conductive in its oxygen deficient state and a mixed electronic ionic conductor that is an electrolyte to oxygen and promotes an electric field effective to cause oxygen ionic motion.
Abstract:
A multi-resistive state element that uses a treated interface is provided. A memory plug includes at least two electrodes that sandwich a multi-resistive state element. Using different treatments on both electrode/multi-resistive state element interfaces improves the memory properties of the entire memory device.
Abstract:
A method for forming an alloy film by cooling a substrate during a sputter deposition process. In one embodiment, aluminum-copper (Al-Cu) alloy film is deposited on a substrate while the substrate is maintained at a temperature lower than 100.degree. C. during a sputter deposition process, thereby reducing the precipitation of CuAl.sub.2. The substrate is cooled by pumping a coolant gas through a cooled platen and against the substrate during processing. Subsequent film formation prior to etching is also performed below 100.degree. C. to prevent precipitation of CuAl.sub.2 until the Al-Cu alloy film is etched. Large crystal grains are formed by annealing the substrate after etching.
Abstract:
A memory cell including conductive oxide electrodes is disclosed. The memory cell includes a memory element operative to store data as a plurality of resistive states. The memory element includes a layer of a conductive metal oxide (CMO) (e.g., a perovskite) in contact with an electrode that may comprise one or more layers of material. At least one of those layers of material can be a conductive oxide (e.g., a perovskite such as LaSrCoO3-LSCoO or LaNiO3-LNO) that is in contact with the CMO. The conductive oxide layer can be selected as a seed layer operative to provide a good lattice match with and/or a lower crystallization temperature for the CMO. The conductive oxide layer may also be in contact with a metal layer (e.g., Pt). The memory cell additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays, such as non-volatile two-terminal cross-point memory arrays.
Abstract:
An integrated circuit having a substrate and a semiconductor device thereon. A stop layer over the substrate has a first dielectric layer formed thereon having an opening into which a first conformal barrier is formed. A first conformal barrier liner is formed in the opening, processed, and treated to improve adhesion. Portions of the first conformal barrier liner on the sidewalls act as a barrier to diffusion of conductor core material to the first dielectric layer. A conductor material is formed in the opening over the vertical portions of the first conformal barrier liner and the first stop layer.
Abstract:
Low-k ILDs are protected from degradation during damascene processing by depositing a thin, conformal silicon carbide liner with a silicon-rich surface before barrier metal layer deposition. Embodiments include forming a dual damascene opening in porous low-k dielectric layers, depositing a thin silicon carbide liner with a silicon-rich surface lining the opening, depositing a barrier metal layer, such as a Ta/TaN composite, and filling the opening with Cu.
Abstract:
A movable terminal in a two terminal memory array. A storage medium is disposed between two terminals, one of the terminals being movable relative to the second terminal. Either one of the terminals or both terminals might actually move, resulting in one terminal being moved relative to the other terminal. A memory element disposed between the two terminals has a conductance that is responsive to a write voltage across the electrodes.
Abstract:
A treated conductive element is provided. A conductive element can be treated by depositing either a reactive metal or a very thin layer of material on the conductive element. The reactive metal (or very thin layer of material) would typically be sandwiched between the conductive element and an electrode. The structure additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays.
Abstract:
Low-k ILDs are protected from degradation during damascene processing by depositing a thin, conformal silicon carbide liner with a silicon-rich surface before barrier metal layer deposition. Embodiments include forming a dual damascene opening in porous low-k dielectric layers, depositing a thin silicon carbide liner with a silicon-rich surface lining the opening, depositing a barrier metal layer, such as a Ta/TaN composite, and filling the opening with Cu.