Abstract:
A semiconductor light emitting device may include: a light emitting structure including an n-type semiconductor layer, a p-type semiconductor layer, and an active layer interposed therebetween; a first electrode connected to one of the n-type semiconductor layer and the p-type semiconductor layer; and a second electrode connected to the other of the n-type semiconductor layer and the p-type semiconductor layer. The first electrode may include a first electrode pad disposed in a central portion of one side of the light emitting structure and first to third branch electrodes connected to the first electrode pad, having a fork shape. The second electrode may include second and third electrode pads disposed separately in both corners of the other side opposing the one side and fourth to seventh branch electrodes connected thereto. The fourth and seventh branch electrodes may extend in an interdigitated manner between the first to third branch electrodes.
Abstract:
Disclosed herein is an assembly structure of a bearing and a holder of a brushless DC motor. The bearing is forcibly fitted into a hollow space formed through the holder. A beveled mouth edge is formed on the upper end of the circumferential inner surface of the holder through which the bearing enters the holder. Therefore, the assembly structure can enhance the workability of the process of assembling the bearing with the holder.
Abstract:
A semiconductor package has an insulative layer having at least one channel formed on a first surface thereof. A conductive pattern conforming to the at least one channel and exposed to a bottom surface of the semiconductor package is formed. A semiconductor die is electrically connected to the conductive patterns. An encapsulant is used to at least partially filling the at least one channel.
Abstract:
This invention relates to a process for hydrogenating selectively the unsaturated double bonds of copolymer having the double bonds of conjugated diene unit, which has been widely used as a modifier of transparent impact-resistant resin or polyolefin, and polystyrene resin. According to this invention, the copolymer is saturated via hydrogenation in the presence of a novel homogeneous system organotitanium catalyst without a separate reducing agent, thus representing an extremely high hydrogenation yield with remarkable hydrogenation reproducibility. Hence, a compound represented by the following formula I is employed as an appropriate catalyst.Formula I ##STR1## Wherein Cp is a cyclopentadienyl (C.sub.5 H.sub.5) group; R.sub.1, R.sub.2 and R.sub.3 are hydrogen atom or alkyl group of 1 to 3 carbon atoms; andR.sub.1, R.sub.2 and R.sub.3 can be the same or different.
Abstract:
A semiconductor light emitting device may include an n-type semiconductor layer, an active layer and a p-type semiconductor layer disposed in a first region corresponding to a portion of an upper surface of the n-type semiconductor layer, an n-type electrode formed in a second region distinct from the first region on the n-type semiconductor layer to be electrically connected to the n-type semiconductor layer and including an n-type electrode pad and first and second n-type electrode fingers, and a p-type electrode formed on the p-type semiconductor layer to be electrically connected to the p-type semiconductor layer and including a p-type electrode pad and a p-type electrode finger. A distance between n-type and p-type electrodes may be constant to significantly reduce a phenomenon of concentration of a current in a specific region of an electrode.
Abstract:
A semiconductor light emitting device includes a substrate, a plurality of light emitting cells, a connection part, and a concavo-convex part. The light emitting cells are arrayed on the top surface of the substrate. Each of the light emitting cells has a first-conductivity-type semiconductor layer, an active layer, and a second-conductivity-type semiconductor layer that are sequentially stacked on the top surface of the substrate. The connection part is formed to connect the light emitting cells in series, parallel or series-parallel. The concavo-convex part is formed in at least one of the bottom surface of the substrate and the top surface of an isolation region between the light emitting cells.
Abstract:
In one embodiment, a semiconductor package includes a generally planar die paddle or die pad that defines multiple peripheral edge segments, and includes one or more tie bars protruding therefrom. In addition, the semiconductor package includes a plurality of leads, portions of which protrude from respective side surfaces of a package body of the semiconductor package. Connected to the top surface of the die pad is at least one semiconductor die which is electrically connected to at least some of the leads. At least portions of the die pad, the leads, and the semiconductor die are encapsulated by the package body. The one or more tie bars and the plurality of leads include downsets that are sized and oriented relative to each other to facilitate enhanced manufacturing.
Abstract:
A motor in which a coupling structure between a sleeve holder and a base plate is improved. The motor may include a base plate including at least one protrusion supporting part formed therein; and a sleeve holder including a cylindrical shaped body part to which a sleeve is fastened in an inside of the sleeve holder, an extension part protruded such that an outer diameter is extended along an outer circumferential surface of the body part, and a flange part vertically protruded in an outer diameter direction from a lower end portion of the extension part so as to make surface contact with an upper surface of the base plate, where the sleeve holder is fastened to the base plate while an outer circumferential surface of the protrusion supporting part is brought into contact with an inner circumferential surface of the extension part.
Abstract:
Disclosed herein is an assembly structure of a bearing and a holder of a brushless DC motor. The bearing is forcibly fitted into a hollow space formed through the holder. A beveled mouth edge is formed on the upper end of the circumferential inner surface of the holder through which the bearing enters the holder. Therefore, the assembly structure can enhance the workability of the process of assembling the bearing with the holder.
Abstract:
The present invention is related to a semiconductor package and method for fabricating the same wherein the semiconductor package includes a die pad having a semiconductor die mounted thereto, and two or more sets of leads or I/O pads which extend at least partially about the die pad in spaced relation thereto and to each other. The formation of the die pad and the leads of the leadframe are facilitated by the completion of multiple plating and chemical etching processes in a prescribed sequence. The present invention is further related to a semiconductor package and method for fabricating the same wherein the semiconductor package includes a semiconductor die electrically connected a plurality of leads or I/O pads via a flip chip type connection, each of the leads being formed by the completion of multiple plating and chemical etching processes in a prescribed sequence.