Abstract:
A magneto-resistive effect element includes a first ferromagnetic film; a second ferromagnetic film; and a first nonmagnetic film interposed between the first ferromagnetic film and the second ferromagnetic film. The first ferromagnetic film has a magnetization more easily rotatable than a magnetization of the second ferromagnetic film by an external magnetic field. The first ferromagnetic film has an effective magnetic thickness of about 2 nm or less.
Abstract:
A magnetic head including a magnetic substrate for operating as a first electrode, a multi-layer film formed on a portion of the surface of the magnetic substrate an inter-layer insulating layer provided to cover side surfaces of the multi-layer film, a flux guide formed on surfaces of the multi-layer film and inter-layer insulating layers, a non-magnetic conductive layer formed on a surface of the flux guide, and a second electrode formed on a surface of the non-magnetic conductive layer, in which the multi-layer film includes a first magnetic layer formed on a portion of the surface of the magnetic substrate and includes a fixed layer, and a second magnetic layer including a non-magnetic layer formed on a surface of the first magnetic layer and a free layer formed on a surface of the non-magnetic layer.
Abstract:
The present invention provides a magnetic head having improved characteristics, using a magnetoresistive device in which current flows across the film plane such as a TMR device. In a first magnetic head of the present invention, when the area of a non-magnetic layer is defined as a device cross-section area, and the area of a yoke is defined as a yoke area, viewed along the direction perpendicular to the surface of the substrate over which the yoke and the magnetoresistive device are formed, then the device cross-section area is not less than 30% of the yoke area, so that a resistance increase of the device cross-section area is suppressed. In a second magnetic head of the present invention, a magnetoresistive device is formed on a substrate, and a yoke is provided above a non-magnetic layer constituting the device. In a third magnetic head of the present invention, the free layer of the magnetoresistive device includes at least two magnetic films and at least one non-magnetic film that are laminated alternately, and the thickness of the non-magnetic layer is not less than 2 nm and not more than 10 nm, and magnetostatic coupling is dominant. In a fourth magnetic head of the present invention, a magnetic gap is provided adjacent to the magnetoresistive device and the magnetic films are coupled antiferromagnetically.
Abstract:
The present invention provides a vertical current-type magneto-resistive element. The element includes an intermediate layer and a pair of magnetic layers sandwiching the intermediate layer, and at least one of a free magnetic layer and a pinned magnetic layer is a multilayer film including at least one non-magnetic layer and magnetic layers sandwiching the non-magnetic layer. The element area defined by the area of the intermediate layer through which current flows perpendicular to the film is not larger than 1000 &mgr;m2.
Abstract:
Magnetic film comprising a substantially crystalline magnetic layer and an intermediate layer alternately formed in contact with each other, wherein the magnetic layer has composition (M1&agr;1X1&bgr;1)100−&dgr;1A1&dgr;1 (&agr;1, &bgr;1, and &dgr;1 represent % by atomic weight; M1 is at least one of Fe, Co, and Ni; X1 is at least one of Mg, Ca, Sr, Ba, Si, Ge, Sn, Al, Ga, and transition metals excluding M1; and A1 is at least one of O and N), wherein: 0.1≦&bgr;1≦12 &agr;1+&bgr;1=100 0
Abstract:
The magnetoresistive device of the present invention includes: at least two magnetic layers stacked via a non-magnetic layer therebetween; and a metal reflective layer of conduction electrons formed so as to be in contact with at least one of outermost two layers of the magnetic layers. The metal reflective layer is in contact with one surface of the outermost magnetic layer which is opposite to the other surface of the outermost magnetic layer in contact with the non-magnetic layer. The metal reflective layer is likely to reflect conduction electrons while maintaining a spin direction of electrons.
Abstract:
An exchange coupling film of the present invention includes a substrate and a multilayer film. The multilayer film includes: a ferromagnetic layer and a magnetization rotation suppressing layer provided adjacent to the ferromagnetic layer for suppressing a magnetization rotation of the ferromagnetic layer; and the magnetization rotation suppressing layer includes an Fe—M—O layer (where M=Al, Ti, Co, Mn, Cr, Ni or V).
Abstract:
In amorphous materials including at least one iron-transition metal of Fe, Co, and Ni, and at least one metalloid of B, C, Si, and P, excellent magnetic characteristics can be provided subject to the condition that 0.5 to 10 atomic % of the above-described iron-transition metals are substituted by Mn. In addition, when the amorphous material partially substituted with Mn as described above is further comprised of at least one element selected from Groups IIIa, IVa, Va, and VIa in the periodic table, the crystallization temperature is considerably raised.
Abstract:
There is provided a magnetoresistance effect element which is a multilayer structure body wherein a first magnetic film layer made of Ni-rich Ni-Co-Fe having a thickness of 10 to 100 .ANG. and a second magnetic film layer made of Co-rich Co-Ni-Fe having a thickness of 10 to 100 .ANG., which are different from each other in coercive force, are integrally laminated with a non-magnetic metal film layer having a thickness of 10 to 100 .ANG. interposed therebetween. The non-magnetic metal film layer is of a metal, for example, Cu, Ag, Au, Pt, Ru or Re. (Ni.sub.A Co.sub.1-A).sub.B Fe.sub.1-B, Ni.sub.A Fe.sub.1-A or Ni.sub.A Co.sub.1-A is used as a material of the first magnetic film, and (Co.sub.C Ni.sub.1-C).sub.D Fe.sub.1-D is used as a material of the second magnetic film.
Abstract:
A nitrogen-containing magnetic alloy film composed of T-M-X amorphous alloy film and (T-M-X)N nitride film, and another film having a composition represented by (T-M-X)N and being compositionally modulated (In both cases T is at least one element selected from the group of Fe, Co, Ni and Mn, M is at least one element selected from the group of Ti, Zr, Hf, Nb, Ta, Cr, Mo, W, Re and Ru, X is at least one element selected from the group of B, Si, Ge and Al, and N is nitrogen.) show excellent characteristics for magnetic head cores such as soft magnetic property and wear resistance.