Abstract:
The invention provides a method and system for electrolytically coating an article. The method includes providing an article to be coated and disposing the article in an electrolytic cell. The cell includes an anode, a cathode in operable communication with the article, and an electrolyte bath. During electrolysis, the electrolyte bath comprises cobalt ions, phosphorous acid, and tribological particles selected from the group consisting of refractory materials, solid lubricants and mixtures thereof dispersed therein. The method further includes applying steady direct electric current through the anode, the electrolyte bath and the cathode to coat the article with cobalt, phosphorous and the tribological particles. An improved composition of matter is also provided that may be used as a coating, or the composition may be electroformed on a mandrel to form an article made from the composition of matter.
Abstract:
Multilayer substrates for the growth and/or support of CNT arrays are provided. These multilayer substrates both promote the growth of dense vertically aligned CNT arrays and provide excellent adhesion between the CNTs and metal surfaces. Carbon nanotube arrays formed using multilayer substrates, which exhibit high thermal conductivity and excellent durability, are also provided. These arrays can be used as thermal interface materials.
Abstract:
Armor components having a ceramic substrate, a thermal sprayed barrier coating covering the substrate material to form a barrier coated substrate, and an outermost encapsulation of metal generally surrounding at least the periphery of the barrier coated substrate are disclosed herein. The encapsulation of metal was cast to the ceramic substrate as molten metal, and the thermal sprayed barrier coating comprises a cermet material, a ceramic material, or a combination thereof. The ceramic substrate is preferably a ceramic tile for ballistic armor. Also disclosed are armor components having a plurality of the ceramic tiles interconnected by the encapsulation of metal, with the metal, which was casted thereto, surrounding at least the periphery of each of the plurality of the armor components.
Abstract:
A creep reinforcement material containing one or a plurality of elements selected from B, W, Cr, Mo, Nb, V, Hf, Zr, Ti, Cu, and Co is coated or thermally sprayed onto a surface of a heat-resistant metal member manufactured using a heat-resistant metal material, and a section coated or thermally sprayed with the creep reinforcement material is covered by a heat-resistant covering member and secured so as to contact the section. The heat-resistant metal member covered by the heat-resistant covering member is heated to a temperature of 1000° C. or greater, and thus compressive force accordingly acts on the heat-resistant metal member as it thermally expands in a direction toward the outer periphery, restraining thermal expansion of the heat-resistant metal member in the direction toward the outer periphery, and enabling the creep reinforcement material on the surface of the heat-resistant metal member to be efficiently diffused and permeated into the heat-resistant metal member.
Abstract:
A power module substrate includes a ceramics substrate composed of Al2O3 having a top face. A metal plate composed of aluminum having a purity of 99.99% or more is joined to the top face of the ceramics substrate with a brazing filler metal which includes silicon interposed therebetween. A high concentration section is formed at a joint interface at which the metal plate is joined to the ceramics substrate, and has a silicon concentration that is more than five times the silicon concentration in the metal plate.
Abstract translation:功率模块基板包括由具有顶面的Al 2 O 3构成的陶瓷基板。 由纯度为99.99%以上的铝构成的金属板与陶瓷基板的上表面接合,该钎焊金属包含硅。 在金属板与陶瓷基板接合的接合界面处形成高浓度部分,其硅浓度大于金属板中硅浓度的五倍。
Abstract:
A method for removing copper-oxide from copper powder, the method comprising: providing a copper powder defined by each particle having a copper core and a copper-oxide layer surrounding the copper core; disposing the particles in an etching solution in a container, wherein the etching solution removes the copper-oxide layer from each particle; decanting the etching solution and by-products; washing the particles; disposing the washed particles in an organic solvent; coating each copper core with an organic material from the organic solvent; dispersing the particles in the organic solvent; and providing the copper powder as dispersed copper cores that are absent a copper-oxide layer and have an organic coating, wherein the steps of dispersing in the etching solution, decanting, washing, disposing in the organic solvent, coating, and dispersing are performed in situ with the plurality of particles disposed in liquid, absent any exposure of the copper cores to air.
Abstract:
A method to increase the damping of a substrate using a face-centered cubic ferromagnetic damping coating having high damping loss attributes when a strain amplitude is 500-2000 micro-strain, and/or maximum damping loss attributes that occurs when the strain amplitude is greater than 250 micro-strain, and a turbine component having a face-centered cubic ferromagnetic damping coating.
Abstract:
Substrates for joints for orthopaedic implants are described, wherein at least one of the sliding surfaces of non-ferrous metal alloys, in particular of cobalt, chromium, molybdenum alloys, has a coating consisting of niobium nitride nanolayers alternating with chromium nitride nanolayers, the lot being protected by a chromium nitride microlayer.
Abstract:
A method for solid state bonding of a plurality of metallic layers and devices made by that method are disclosed. First and second metallic layers are solid state bonded utilizing a protective coating on the non-bonded surfaces that engage the pressure applying appliance to prevent the surfaces from adhering to the pressure applying appliance and to protect the surfaces from imprinting during the bonding process. The invention can be used to fabricate micro-channel devices with smooth outer surfaces and eliminate mold release compounds utilized in conventional bonding procedures.