Abstract:
A method is disclosed for applying a vibration-damping surface to an article. The method includes providing a coating material comprising a ceramic, metallic or cermet material and a viscoelastic glass frit and plasma spraying the coating material onto an article. The coating material forms a plurality of ceramic, metallic or cermet microstructures having voids with the viscoelastic glass frit distributed to interact with the voids to provide vibration damping. Also disclosed are plasma spray coatings for damping vibrations that includes a ceramic-glass frit composite coating capable of reducing resonant vibrations in a substrate at temperatures between 700° F. to 1500° F. and said plasma spray coating as a coating on a substrate.
Abstract:
Armor components having a ceramic substrate, a thermal sprayed barrier coating covering the substrate material to form a barrier coated substrate, and an outermost encapsulation of metal generally surrounding at least the periphery of the barrier coated substrate are disclosed herein. The encapsulation of metal was cast to the ceramic substrate as molten metal, and the thermal sprayed barrier coating comprises a cermet material, a ceramic material, or a combination thereof. The ceramic substrate is preferably a ceramic tile for ballistic armor. Also disclosed are armor components having a plurality of the ceramic tiles interconnected by the encapsulation of metal, with the metal, which was casted thereto, surrounding at least the periphery of each of the plurality of the armor components.
Abstract:
A durable ceramic and metallic coating has been applied to ceramic tiles to protect the tiles while undergoing a molten metal casting operation. The plasma sprayed coating consists of a ceramic top coat layer of aluminum oxide, zirconium oxide, or other oxides with or without a metallic bond coat layer and with or without a functionally gradient coating. This coating protects the underlying ceramic tile, which is composed of boron carbide, silicon carbide, alumina (Al2O3) or other type of hard ceramic, from reacting chemically with the molten metal. The molten metal is cast around the ceramic tiles to create a lattice of ceramic tiles that are used for protection from projectiles and shrapnel.
Abstract translation:耐用的陶瓷和金属涂层已被应用于瓷砖,以在进行熔融金属铸造操作时保护瓷砖。 等离子喷涂涂层由氧化铝,氧化锆或具有或不具有金属粘结涂层的其它氧化物的陶瓷顶涂层组成,并具有或不具有功能梯度涂层。 该涂层保护由碳化硼,碳化硅,氧化铝(Al 2 O 3)或其它类型的硬质陶瓷构成的下面的瓷砖与熔融金属化学反应。 熔融金属铸造在瓷砖周围,以产生用于保护射弹和弹片的瓷砖格子。
Abstract:
A method is disclosed for applying a vibration-damping surface to an article. The method includes providing a coating material comprising a ceramic, metallic or cermet material and a viscoelastic glass frit and plasma spraying the coating material onto an article. The coating material forms a plurality of ceramic, metallic or cermet microstructures having voids with the viscoelastic glass frit distributed to interact with the voids to provide vibration damping. Also disclosed are plasma spray coatings for damping vibrations that includes a ceramic-glass frit composite coating capable of reducing resonant vibrations in a substrate at temperatures between 700° F. to 1500° F. and said plasma spray coating as a coating on a substrate.
Abstract:
Polycrystalline silicon films useful in preparing solar cells primarily for terrestrial application are prepared by a plasma spraying process. A doped silicon powder is injected into a high temperature ionized gas (plasma) to become molten and to be sprayed onto a low-cost substrate. Upon cooling, a dense polycrystalline silicon film is obtained. A p-n junction is formed on the sprayed film by spray deposition, diffusion or ion implantation. A sprayed junction is produced by plasma spraying a thin layer of silicon of opposite polarity or type over the initially deposited doped film. In forming a diffused junction, dopant is applied over the surface of the initial plasma-sprayed film usually from the vapor phase and heat is used to cause the dopant to diffuse into the film to form a shallow layer of opposite polarity to that in the original film. A junction is also formed by implanting dopant ions in the surface of the originally deposited film by the use of electrical fields. When used in conjunction with ohmic contacts and electrical conductors, the p-n junctions produced using plasma-sprayed polycrystalline silicon films are formed into solar cells which are useful for directly converting sunlight into electricity by means of the photovoltaic effect.
Abstract:
A durable ceramic and metallic coating has been applied to ceramic tiles to protect the tiles while undergoing a molten metal casting operation. The plasma sprayed coating consists of a ceramic top coat layer of aluminum oxide, zirconium oxide, or other oxides with or without a metallic bond coat layer and with or without a functionally gradient coating. This coating protects the underlying ceramic tile, which is composed of boron carbide, silicon carbide, alumina (Al2O3) or other type of hard ceramic, from reacting chemically with the molten metal. The molten metal is cast around the ceramic tiles to create a lattice of ceramic tiles that are used for protection from projectiles and shrapnel.
Abstract translation:耐用的陶瓷和金属涂层已被应用于瓷砖,以在进行熔融金属铸造操作时保护瓷砖。 等离子喷涂涂层由氧化铝,氧化锆或具有或不具有金属粘结涂层的其它氧化物的陶瓷顶涂层组成,并具有或不具有功能梯度涂层。 该涂层保护由碳化硼,碳化硅,氧化铝(Al 2 O 3)或其它类型的硬质陶瓷构成的下面的瓷砖与熔融金属化学反应。 熔融金属铸造在瓷砖周围,以产生用于保护射弹和弹片的瓷砖格子。
Abstract:
A corrosion-resistant protective coating for an apparatus and method of processing a substrate in a chamber containing a plasma of a processing gas. The protective coating or sealant is used to line or coat inside surfaces of a reactor chamber that are exposed to corrosive processing gas that forms the plasma. The protective coating comprises at least one polymer resulting from a monomeric anaerobic chemical mixture having been cured in a vacuum in the absence of oxygen. The protective coating includes a major proportion of at least one methacrylate compound and a minor proportion of an activator compound which initiates the curing process of the monomeric anaerobic mixture in the absence of oxygen or air.
Abstract:
A coated waveguide holder-humidifier to supply moisture in the case of moisture-sensitive reactions in order that quantitative results might be obtained with a gradient light analytical detector which will quantitatively measure atmospheric contaminants by comparing changes in light transmission through the coated waveguides before and after exposure. The coated waveguide holder-humidifier comprises a container, a porous material capable of absorbing water and desorbing water vapor mounted within the container, means to hold one or more waveguides within the container, and one or more openings in the container to allow fluid (liquid or gas) sample to contact a waveguide. Also, a method for improving the sensitivity of gaseous reactants on a waveguide where the reaction is moisture sensitive comprising humidifying the environment of said waveguide providing an atmosphere which has a substantially constant humidity normally in the range of 85 to 100% at which said reaction is not appreciably affected by changes in ambient relative humidity.
Abstract:
This invention is a coated waveguide holder-humdifier which is used to supply moisture in the case of moisture sensitive reactions in order that quantitative results might be obtained with a gradient light analytical detector which will quantitatively measure atmospheric contaminants by comparing changes in light transmission through the coated waveguides before and after exposure. The coated waveguide holder-humidifier comprises a container, a porous material capable of absorbing water and desorbing water vapor mounted within the container, means to hold one or more waveguides within the container, and one or more openings in the container to allow fluid (liquid or gas) sample to contact a waveguide. Also the invention is a method for improving the sensitivity of gaseous reactants on a waveguide where the reaction is moisture sensitive comprising humidifying the environment of said waveguide providing an atmosphere which has a substantially constant humidity normally in the range of 85% to 100% at which said reaction is not appreciably affected by changes in ambient relative humidity.