Abstract:
After an underlying layer, made of a single crystal metal material, has been formed on a semiconductor layer, part or all of the underlying layer is changed into a metal oxide layer by supplying oxygen thereto from above the underlying layer. Then, a ferroelectric or high-dielectric-constant film is further formed on the metal oxide layer. Since the film made of a metal material is formed on the semiconductor layer, a silicon dioxide film or the like is not formed easily. Thus, a dielectric film, which includes an underlying layer with a high dielectric constant and has a large capacitance per unit area, can be obtained. Various defects such as interface states in the semiconductor layer can also be reduced advantageously if these process steps are performed after a thermal oxide film has been formed on the semiconductor layer.
Abstract:
A magnetic head including a magnetic substrate for operating as a first electrode, a multi-layer film formed on a portion of the surface of the magnetic substrate an inter-layer insulating layer provided to cover side surfaces of the multi-layer film, a flux guide formed on surfaces of the multi-layer film and inter-layer insulating layers, a non-magnetic conductive layer formed on a surface of the flux guide, and a second electrode formed on a surface of the non-magnetic conductive layer, in which the multi-layer film includes a first magnetic layer formed on a portion of the surface of the magnetic substrate and includes a fixed layer, and a second magnetic layer including a non-magnetic layer formed on a surface of the first magnetic layer and a free layer formed on a surface of the non-magnetic layer.
Abstract:
The present invention provides a magnetic head having improved characteristics, using a magnetoresistive device in which current flows across the film plane such as a TMR device. In a first magnetic head of the present invention, when the area of a non-magnetic layer is defined as a device cross-section area, and the area of a yoke is defined as a yoke area, viewed along the direction perpendicular to the surface of the substrate over which the yoke and the magnetoresistive device are formed, then the device cross-section area is not less than 30% of the yoke area, so that a resistance increase of the device cross-section area is suppressed. In a second magnetic head of the present invention, a magnetoresistive device is formed on a substrate, and a yoke is provided above a non-magnetic layer constituting the device. In a third magnetic head of the present invention, the free layer of the magnetoresistive device includes at least two magnetic films and at least one non-magnetic film that are laminated alternately, and the thickness of the non-magnetic layer is not less than 2 nm and not more than 10 nm, and magnetostatic coupling is dominant. In a fourth magnetic head of the present invention, a magnetic gap is provided adjacent to the magnetoresistive device and the magnetic films are coupled antiferromagnetically.
Abstract:
The present invention provides a vertical current-type magneto-resistive element. The element includes an intermediate layer and a pair of magnetic layers sandwiching the intermediate layer, and at least one of a free magnetic layer and a pinned magnetic layer is a multilayer film including at least one non-magnetic layer and magnetic layers sandwiching the non-magnetic layer. The element area defined by the area of the intermediate layer through which current flows perpendicular to the film is not larger than 1000 &mgr;m2.
Abstract:
A magnetic material for microwave, comprising a phase having garnet structure, said phase comprising a component represented by Formula I (A.sub.3-a Bi.sub.a)B.sub.x O.sub.y Formula I where A represents a component comprising at least one element selected from yttrium (Y) and rare earth elements, B represents a component comprising Fe, a represents a number in the range of 0 to less than 2.00, x represents a number in the range of 4.76 to less than 5.00, and y represents a number satisfying an inequality 1.5(3+x).ltoreq.y.ltoreq.12.
Abstract translation:一种用于微波的磁性材料,包括具有石榴石结构的相,所述相包含由式I(A3-aBia)BxOyFormula I表示的组分,其中A表示包含选自钇(Y)和稀土元素中的至少一种元素的组分B 表示包含Fe的成分,a表示0〜小于2.00的数,x表示4.76〜小于5.00的数,y表示满足不等式1.5(3 + x)< = y = 12。
Abstract:
A refrigeration cycle 1 is constituted by joining at least a compressor 2, a condenser 3, a decompression and expansion device 4, and an evaporator 5 to each other by a pipe 6. The condenser 3 is formed of a condenser with a supercooling part including a condensing part 7 and a supercooling part 8. The refrigeration cycle 1 further includes an internal heat exchanger 25. A rate at which the supercooling part 8 occupies with respect to the whole condenser 3 is set to a value which falls within a range of 3% to 9% when the heat exchange efficiency of the internal heat exchanger 25 falls within a range of 25% to 75%.
Abstract:
A lens system comprising a first lens group with a negative refractive power, a second lens group with a positive refractive power, and a third lens group with a positive refractive power arranged in this order from an object side, wherein a focal length f2 of the second lens group, a focal length f3 of the third lens group and a radius of curvature Rm of an object side-surface of a lens that is closest to the object side in the second lens group satisfy following conditions 0.30
Abstract:
An expansion device capable of preventing an abnormal increase in the high-pressure in a freezing cycle and having, as an integrated unit thereof, a mechanism capable of quickly responding to an abnormal increase in the high-pressure and the low-pressure is provided. A means for displacement (bellows) 28 which becomes displaced in correspondence to the high-pressure is linked to a valve element 24 of a restrictor valve mechanism 32 to displace a rod 34 provided with a safety valve mechanism 33. If the high-pressure reaches a level equal to or higher than a first specific pressure (the limit to the normal operating pressure), a first portion 26 of the safety valve mechanism 33 becomes disengaged from a relief hole 27 that communicates between a high-pressure space 29 and a low-pressure passage 31 to be replaced by a second portion 25 which allows passage through the relief hole 27, thereby leaking the coolant in the high-pressure space 29 to the low-pressure passage 31 and preventing a further increase in the high-pressure. In addition, a low-pressure side rupture disk mechanism 40 that becomes ruptured if the low-pressure reaches a level equal to a second specific pressure to communicate between the low-pressure passage 31 and the atmosphere is provided at the low-pressure passage 31. A high-pressure side rupture disk mechanism 50 that becomes ruptured if the high-pressure reaches a level equal to or higher than a third specific pressure to communicate between the high-pressure passage 30 and the atmosphere is provided at the high-pressure passage 30.
Abstract:
A magnetic thin film having excellent soft magnetic properties formed by alternately laminating a main magnetic layer and an intermediate layer, in which the main magnetic layer includes magnetic crystal grains substantially having a columnar structure which have an average height dl and an average diameter ds forming a shape ratio of 0.3.ltoreq.ds/dl.ltoreq.90.9, and the intermediate layer has saturation magnetic flux density of at least 0.1 tesla less than the main magnetic layer. The main magnetic layer and the intermediate layer having saturation magnetic flux density of at least 0.1 tesla less than the main magnetic layer are alternately laminated. It is preferable that the main magnetic layer has a thickness of 3 to 100 nm, and the intermediate layer has a thickness of 0.1 to 10 nm. In addition, it is preferable that a thickness of the entire laminated structure is in the range of about 100 nm to 10 .mu.m. The main magnetic layer is formed mainly of magnetic crystal grains, and there are some grains which grow penetrating the intermediate layer.
Abstract:
For applying ferroelectrics to electronic devices, the poling treatment of the ferroelectrics has been necessary in order to uniform directions of spontaneous polarizations, Ps, in each ferroelectric. This treatment brings about (1) low yields of the devices, (2) difficulties in the fabrication of array devices, and (3) difficulties in the formation of ferroelectric films on semiconductor devices. Now it has been found that a self-polarized film in which spontaneous polarizations, Ps, are unidirectional can be formed by sputtering a ferroelectric materials containing lead under such conditions that the orientation of Ps will be controlled without poling treatment and a high-performance ferroelectric device can be obtained in a high yield by using this film, and thus a process for producing such devices has been found.