摘要:
The present invention provides a non-lead piezoelectric film having high crystalline orientation, the low dielectric loss, the high polarization-disappear temperature, the high piezoelectric constant, and the high linearity between an applied electric field and an amount of displacement. The present invention is a piezoelectric film comprising: a NaxLa1-x+yNi1-yO3-x layer having only an (001) orientation and a (1-α) (Bi, Na, Ba) TiO3-αBiQO3 layer having only an (001) orientation. The (1-α) (Bi, Na, Ba) TiO3-αBiQO3 layer is formed on the NaxLa1-x+yNi1-yO3-x layer. The character of Q represents Fe, Co, Zn0.5Ti0.5, or Mg0.5Ti0.5 The character of x represents a value of not less than 0.01 and not more than 0.05. The character of y represents a value of not less than 0.05 and not more than 0.20. The character of α represents a value of not less than 0.20 and not more than 0.50.
摘要:
Provided are a piezoelectric thin film including a lead-free ferroelectric material and exhibiting high piezoelectric performance comparable to that of PZT, and a method of manufacturing the piezoelectric thin film. The piezoelectric thin film of the present invention has a multilayer structure in which a metal electrode film having a plane orientation of (100), a (Bi,Na)TiO3 film, and a (Bi,Na,Ba) TiO3 film having a plane orientation of (001) are laminated in this order. The piezoelectric thin film of the present invention can be applied to a wide range of fields and uses. For example, with the piezoelectric thin film of the present invention, an angular velocity sensor of the present invention having high sensitivity and a piezoelectric generating element of the present invention having excellent power generation characteristics can be constructed.
摘要:
The purpose of the present invention is to provide a lead-free piezoelectric film including a lead-free ferroelectric material and having low dielectric loss and high piezoelectric performance comparable to that of PZT, and a method of manufacturing the lead-free piezoelectric film.The present invention is directed to a piezoelectric film comprising a NaxLa1-xNiO3-x layer with a (001) orientation and a (Na,Bi)TiO3—BaTiO3 layer with a (001) orientation, wherein x is not less than 0.01 and not more than 0.1, and the NaxLa1-xNiO3-x layer (0.01≦x≦0.1) and the (Na,Bi)TiO3—BaTiO3 layer are laminated.
摘要:
Provided is a relatively easy-to-fabricate piezoelectric power generating element capable of generating a large amount of electric power while comprising a bridge-type vibration beam that is resistant to damage from external vibration. This element comprises a support member, a strip-shaped vibration beam, a piezoelectric layer, and electrodes. The first and second ends of the vibration beam are fixed to the support member. The piezoelectric layer and the electrodes are provided on the surface of the vibration beam. The vibration beam extends in a plane when it is not vibrating. The vibration beam has a first portion that extends from the first end fixed to the support member, a second portion that extends from the second end fixed to the support member, and a third portion that connects the end of the first portion opposite to the first end and the end of the second portion opposite to the second end. The vibration beam has a shape such that, when viewed in a direction perpendicular to the plane, a first direction in which the first portion extends is a direction closer to the second end, and a second direction in which the second portion extends is a direction closer to the first end, the first and second directions each make an angle of more than 0° and less than 90° with respect to a straight line connecting the center of the first end and the center of the second end, and the third portion intersects once the straight line.
摘要:
The present invention provides a thermoelectric conversion material composed of an oxide material represented by chemical formula A0.8-1.2Ta2O6-y, where A is calcium (Ca) alone or calcium (Ca) and at least one selected from magnesium (Mg), strontium (Sr), and barium (Ba), and y is larger than 0 but does not exceed 0.5 (0
摘要:
The present invention provides a thermoelectric conversion material composed of an oxide material represented by chemical formula A0.8-1.2Ta2O6-y, where A is calcium (Ca) alone or calcium (Ca) and at least one selected from magnesium (Mg), strontium (Sr), and barium (Ba), and y is larger than 0 but does not exceed 0.5 (0
摘要:
Provided are a piezoelectric thin film including a lead-free ferroelectric material and exhibiting high piezoelectric performance comparable to that of lead zirconate titanate (PZT), and a method of manufacturing the piezoelectric thin film. The piezoelectric thin film of the present invention includes: a LaNiO3 film having a (001) orientation; an interface layer having a (001) orientation and composed of a compound represented by a chemical formula ABO3 (where A is represented by (Bi,Na)1-xCx (0≦x≦1), B is Ti or TiZr, and C is an alkali metal other than Na); and a (Bi,Na,Ba)TiO3 film having a (001) orientation. The LaNiO3 film, the interface layer, and the (Bi,Na,Ba)TiO3 film are laminated in this order.
摘要:
The invention provides a power generation method using a thermoelectric element, a thermoelectric element, and a thermoelectric device that excel in thermoelectric performance and are applicable to a wider range of applications over conventional counterparts. The element includes a first electrode and a second electrode that are disposed to oppose each other, and a laminate interposed between the first and second electrodes and electrically connected to both of the electrodes. The laminate has a structure in which a Bi layer and a metal layer made of a metal other than Bi are alternately layered, and the Bi layer and the metal layer having layer surfaces that are slanted with respect to a direction in which the first and second electrodes oppose each other. The element generates a potential difference between the electrodes by a temperature difference created along a direction perpendicular to the opposing direction of the first and second electrodes in the element. The power generation method and the thermoelectric device use this element.
摘要:
The present invention provides an electric power generation method using a thermoelectric power generation element, a thermoelectric power generation element, and a thermoelectric power generation device, each of which has higher thermoelectric power generation performance than conventional ones and can be used for more applications. The thermoelectric power generation element includes a first electrode and a second electrode that are disposed to oppose each other, and a laminate that is interposed between the first and second electrodes and that is electrically connected to both the first and second electrodes, where the laminate has a structure in which Bi2Te3 layers and metal layers containing Al, Cu, Ag, or Au are laminated alternately, a thickness ratio between the metal layer and the Bi2Te3 layer is in a range of metal layer:Bi2Te3 layer=400:1 to 20:1, lamination surfaces of the Bi2Te3 layers and the metal layers are inclined at an inclination angle θ of 15° to 60° with respect to a direction in which the first electrode and the second electrode oppose each other, and a temperature difference applied in a direction perpendicular to the direction in the element generates a potential difference between the first and second electrodes. The electric power generation method and thermoelectric power generation device each use the element.
摘要翻译:本发明提供了一种使用热电发电元件,热电发电元件和热电发电装置的发电方法,其具有比常规热电发电性能更高的热电发电性能,并且可用于更多应用。 热电发电元件包括彼此相对设置的第一电极和第二电极,以及插入在第一和第二电极之间并且与第一和第二电极两者电连接的层压体,其中层压体 其中Bi 2 Te 3层和含有Al,Cu,Ag或Au的金属层交替层叠的结构,金属层和Bi 2 Te 3层之间的厚度比在金属层的范围内:Bi 2 Te 3层= 400:1〜20: 如图1所示,Bi2Te3层和金属层的层压面以相对于第一电极和第二电极相对的方向为15°〜60°的倾斜角θ倾斜,并且在 与元件中的方向垂直的方向产生第一和第二电极之间的电位差。 发电方法和热电发电装置均使用该元件。
摘要:
An electro-resistance element that has a different configuration from conventional elements and shows outstanding resistance change characteristics is provided. An electro-resistance element has two or more states in which electric resistance values are different, and is switchable from one of the two or more states into another by application of a predetermined voltage or current. The electro-resistance element includes: a multilayer structure including an upper electrode, a lower electrode, and an electro-resistance layer sandwiched by the electrodes, the multilayer structure disposed on a substrate; wherein the electro-resistance layer has a spinel structure, and a surface of the lower electrode that faces the electro-resistance layer is oxidized. The electro-resistance element can be manufactured by a manufacturing process at 400° C. or lower.