Abstract:
A vibrator device includes a base, a first relay substrate mounted on the base, a second relay substrate mounted on the first relay substrate, and a vibrator element mounted on the second relay substrate, in which the second relay substrate is disposed between the first relay substrate and the vibrator, and the second relay substrate includes a terminal that is electrically coupled to the vibrator element and is positioned in a region overlapping with the first relay substrate and not overlapping the vibrator element in a plan view.
Abstract:
A gyro sensor element includes a base, driving vibrating arms, which extend from the base, have a first surface and a second surface located on an opposite side to the first surface, and make a driving vibration, and detecting vibrating arms, which extend from the base, have a third surface located on a same side as the first surface and a fourth surface located on an opposite side to the third surface, and vibrate in accordance with a physical quantity applied to the driving vibrating arms, wherein the driving vibrating arms have bottomed grooves on at least one of the first surface and the second surface, and driving electrodes disposed on inner surfaces of the bottomed grooves, and the detecting vibrating arms have through holes penetrating the detecting vibrating arms in a direction crossing the third surface and the fourth surface, and detecting electrodes disposed on at least a part of an inner wall surface of the through holes.
Abstract:
A rotation sensing device is presented. The device comprises: a proof mass arrangement comprising at least one pair of proof masses spaced-apart from one another along a first axis; a suspension assembly comprising flexible suspension beams having a main axis deformable between their substantially straight and curved states, the suspension assembly coupling the proof masses to an anchor assembly, while allowing a drive-mode oscillatory movement of the proof masses at least along a second axis substantially perpendicular to the main axis of the beams; and an actuation mechanism configured and operable to cause the drive-mode oscillatory movement of the proof masses in opposite directions along said second axis, thereby generating a sense-mode oscillatory movement of the proof masses during the rotation of the device about at least one rotation axis perpendicular to said second axis, said sense-mode movement being indicative of a rate of the rotation.
Abstract:
A sensor comprising: a stand; a first body movable along a sensing axis; two pairs of second bodies arranged symmetrically relative to the first body and along the sensing axis; transducers for detecting a position of the first body relative to the stand, for setting the second bodies into vibration along a vibration axis, and for detecting respective vibration frequencies of the second bodies; and surface electrostatic coupling means connecting each second body to the first body in such a manner that a movement of the first body relative to the stand along the sensing axis gives rise respectively to an increase and to a decrease in the electrostatic coupling for one and the other of the pairs of second bodies. Methods of controlling such a sensor.
Abstract:
An angular velocity sensor includes a vibrator located along x-y plane specified by x direction and y direction that are orthogonal to each other; a substrate that is separated away from the vibrator along z direction perpendicular to the x-y plane; an anchor device extended from the substrate to the x-y plane in which the vibrator is located; a linkage beam device that links the anchor device to the vibrator, the linkage beam being able to twist about the y direction; an excitation portion that vibrates the vibrator along the z direction; and a detection portion that detects an angular velocity based on a displacement along the x direction of the vibrator. The vibrator includes a linkage region to link with the linkage beam device, and the linkage region becomes a wave node when the vibrator vibrates along the z direction.
Abstract:
A sensor element has drive vibrating arms drive-vibrating by energization, adjustment vibrating arms vibrating with the drive vibrations of the drive vibrating arms, detection electrodes outputting charge in response to physical quantities applied to the drive vibrating arms, first electrodes provided on the adjustment vibrating arms, electrically connected to the detection electrodes, and outputting charge with the vibrations of the adjustment vibrating arms, and a pair of second electrodes provided on the adjustment vibrating arms, electrically connected to a pair of detection electrodes, and outputting charge having an opposite polarity to that of the first electrodes with the vibrations of the adjustment vibrating arms.
Abstract:
The present invention relates to a method for operating a rotation sensor for detecting a plurality of rates of rotation about orthogonal axes (x,y,z). The rotation sensor comprises a substrate, driving masses, X-Y sensor masses, and Z sensor masses. The driving masses are driven by drive elements to oscillate in the X-direction. The X-Y sensor masses are coupled to the driving masses, and driven to oscillate in the X-Y direction radially to a center. When a rate of rotation of the substrate occurs about the X-axis or the Y-axis, the X-Y sensor masses are jointly deflected about the Y-axis or X-axis. When a rate of rotation of the substrate occurs about the Z-axis, the X-Y sensor masses are rotated about the Z-axis, and the Z sensor masses are deflected substantially in the X-direction.
Abstract:
A motor drive loop circuit for a micro-electro-mechanical system (MEMS) gyroscope is provided. The motor drive loop circuit includes a motor configured to drive a proof mass in the MEMS gyroscope and a minus-90-degree phase-shift twin-tee notch filter. The motor is configured to cause the proof mass to oscillate at a primary-proof-mass mode. The a minus-90-degree phase-shift twin-tee notch filter is configured to: provide a minus 90 degree phase at a motor resonance frequency equal to the primary-proof-mass mode; suppress resonance at undesired mechanical modes of the motor during a startup of the motor; and provide gain at the motor resonance frequency.
Abstract:
A detection element has: first and second fixed parts; first and second vertical beams each connected at first and second ends to the first and second fixed parts, respectively; a horizontal beam connected at first and second ends to centers of the first and second vertical beams, respectively; and four arms each connected at a first end to the horizontal beam and having a weight formed on a second end. The first vertical beam has a first slit formed nearer the first fixed part with respect to its center, a second slit formed nearer the second fixed part with respect to its center, and a coupling portion between these slits. The second vertical beam has a third slit formed nearer the first fixed part with respect to its center, a fourth slit formed nearer the second fixed part with respect to its center, and a coupling portion between these slits.
Abstract:
Disclosed herein is a sensor including a mass body; a fixing part provided so as to be spaced apart from the mass body; a first flexible part connecting the mass body and the fixing part to each other in a Y-axis; and a second flexible part connecting the mass body and the fixing part to each other in an X-axis, wherein the first flexible part has a width in an X-axis direction larger than a thickness in a Z-axis direction, and the second flexible part has a thickness in a Z-axis direction larger than a width in a Y-axis direction.