摘要:
The present invention relates generally to a new apparatus and method for screening using electrostatic adhesion. More particularly, the invention encompasses an apparatus that uses an electrostatic charge during the screening process for a semiconductor substrate. Basically, a backing layer is adhered to a green ceramic sheet using an electrostatic charge, while the green ceramic sheet is processed.
摘要:
Disclosed is an aluminum nitride body having graded metallurgy and a method for making such a body. The aluminum nitride body has at least one via and includes a first layer in direct contact with the aluminum nitride body and a second layer in direct contact with, and that completely encapsulates, the first layer. The first layer includes 30 to 60 volume percent aluminum nitride and 40 to 70 volume percent tungsten and/or molybdenum while the second layer includes 90 to 100 volume percent of tungsten and/or molybdenum and 0 to 10 volume percent of aluminum nitride.
摘要:
A semiconductor package is described for supporting and interconnecting semiconductor chips, each chip having contact lands on a contact surface, the package also including a substrate with a contact surface. An interposer module is disposed between at least one chip's contact surface and the substrate's contact surface. The interposer module has first and second opposed surfaces and a first plurality of contact locations positioned on its first surface which mate with a chip's contact land. A second plurality of contact locations on the interposer modules second surface are positioned to mate with contact lands on the substrate. A set of conductive vias are positioned within the interposer module and connect the first plurality of contact locations with a first subset of the second plurality of contact locations. A distributed capacitance layer is positioned within the interposer and is adjacent to its first surface. Adjacent to the second surface are X and Y lines which can be used to make engineering change interconnections.
摘要:
A hermetic package for an electronic device is manufactured by providing a green glass ceramic body with a green via to produce a workpiece. The workpiece is sintered at a temperature at or above 500.degree. C., while compressing the workpiece at a pressure at or above 100 pounds per square inch, so as to obtain a hermetic package. The green via comprises a mixture of copper and a glass ceramic material with a sufficient volume of glass to produce a hermetic package, yet with sufficient copper to have a suitable electrical conductivity.The hermetic package thus produced comprises a sintered glass ceramic body having an electrically conductive sintered via which is hermetically bonded to the glass ceramic body and which comprises a mixture of an electrically conductive material and a glass ceramic material. The electrically conductive material forms at most 50 volume percent of the via.The workpeice may be sintered in a sintering fixture having a frame and a compensating insert. The compensating insert and frame bound a sintering chamber for accommodating the workpiece. By providing a frame having a thermal expansion coefficient greater than that of the workpiece, and by providing a compensating insert having a thermal expansion coefficient greater than that of the frame, a close fit can be assured between the workpiece and the sintering fixture over a large range of temperatures.
摘要:
A method for making small punches by employing multi-layer ceramic (MLC) technology includes the steps of preparing a sublaminate matrix of a high or low sintering temperature material, drilling holes in the sublaminate using a mask as a guide, filling the holes with punch material paste by a solupor process, laminating the sublaminate to a base plate or as a freestanding substrate, firing a laminate at an appropriate sintering temperature and removing the matrix material by a chemical or mechanical method. In accordance with the present invention, a large number of small punches are made in parallel to precise dimensions of two to ten mils in diameter and approximately 100 mils in length. This method allows that a punch plate array can also be used to simultaneously punch an array of vias in a greensheet and eliminates the additional step of loading individual punches into a punch plate, offering cost and time savings.
摘要:
A method to repair Aluminum Nitride (AlN) substrates is disclosed wherein a frequency doubled Q-switched Nd:YAG laser is used to remove unwanted metallurgy. The substrate is place in a liquid filled work chamber which acts to prevent metallic species of AlN from forming. The repair site can be sealed with a novel polymer coating to prevent contamination or corrosion. Repairs can be made to buried or surface metallurgy.
摘要:
Electronic packages made with a high area percent coverage of blanket metal may be prone to certain kinds of ceramic defects. In aluminum nitride, these defects may be related to decomposition of the liquid sintering aid. In this experiment, unique additions to the metallization prevented the formation of certain ceramic defects. Our approach involves a unique composition used in an existing process.
摘要:
A multi-chip module and heat-sink cap assembly and method of fabrication, which provides sufficient cooling for higher power density chips. The heat-sink cap has heat-sink columns disposed over each chip on a substrate. The heat-sink columns are interconnected by flexible members to provide a unitary cover. Thin film metallization of at least a portion of the mating surfaces of the substrate, chips and heat-sink column permits soldering of the cap to the chips and substrate to form the package which is a mechanically stable structure with no degradation of interconnection fatigue life due to thermal cycling of the assembly when in use.
摘要:
Disclosed is an aluminum nitride body having graded metallurgy and a method for making such a body. The aluminum nitride body has at least one via and includes a first layer in direct contact with the aluminum nitride body and a second layer in direct contact with, and that completely encapsulates, the first layer. The first layer includes 30 to 60 volume percent aluminum nitride and 40 to 70 volume percent tungsten and/or molybdenum while the second layer includes 90 to 100 volume percent of tungsten and/or molybdenum and 0 to 10 volume percent of aluminum nitride.
摘要:
Methods of fabricating powders of electrically conductive particles supersaturated with grain growth control additives are described. A molten admixture of an electrically conductive material and a grain growth control additive is atomized by spraying an inert atmosphere forming fine molten particles which rapidly cool to form solid particles which are supersaturated with the grain growth control additive. The supersaturated particles are heated to form an electrical conductor having grain sizes less than about 25 microns. The supersaturated particles can be combined with a binder to form an electrical conductor forming paste. Patterns of the paste can be embedded in a green ceramic which can be sintered to form a semiconductor chip packaging substrate having electrical conductors with controlled grain size. During sintering of the combination of ceramic precursor and conductor forming paste, the grain growth control additive results in a substantially void free and crack free via filled with metal having a fine grain morphology.