摘要:
The present invention includes a removable microchannel unit including an inlet orifice and an outlet orifice in fluid communication with a plurality of microchannels distributed throughout the removable microchannel unit, and a pressurized vessel adapted have the removable microchannel unit mounted thereto, the pressurized vessel adapted to contain a pressurized fluid exerting a positive gauge pressure upon at least a portion of the exterior of the removable microchannel unit. The invention also includes a microchannel unit assembly comprising a microchannel unit operation carried out within a pressurized vessel, where pressurized vessel includes a pressurized fluid exerting a positive gauge pressure upon an exterior of the microchannel unit operation, and where the microchannel unit operation includes an outlet orifice in fluid communication with an interior of the pressurized vessel.
摘要:
An apparatus (10) for performing microfluidic processes comprising a base (50), a plurality of fluidic modules (20) releasably attached to the base (50), each fluidic module (20) comprising a fluid port (25) and a microfluidic manifold module (40) comprising a plurality of ports (45). A frame (70) is attached to the base (50) for releasably retaining the microfluidic manifold module (40), the frame (70) being moveable relatively to the base (50) to move the microfluidic manifold module (40) into contact with the fluidic modules (20) such that each fluid port (25) of the fluidic modules (20) aligns and seals with a respective port (45) on the microfluidic manifold module (40) thus completing a microfluidic circuit. A method for constructing and testing the apparatus (10) is also disclosed.
摘要:
Methods and reagents for photo-initiated carbonylation with carbon-isotope labeled carbon monoxide using alkyl/aryl iodides with water pretreated by a base are provided. The resultant carbon-isotope labeled acids are useful as radiopharmaceuticals, especially for use in Positron Emission Tomography (PET). Associated kits for PET studies are also provided.
摘要:
There is described a microfluid system with a microchannel structure for the passage of fluids and a further channel structure separated from the microstructure by means of at least one separating wall for the passage of a heat transfer fluid. The risk of internal leakage in the microfluid system can be recognized in time, by separation of the microchannel structure from a cavity of at least one point by a further separating wall, said separating wall being at least locally weaker than the separating wall between the microchannel structure and the further channel structure and said cavity is connected to a detector device for detection of ingressing fluid.
摘要:
Hydrogen peroxide is prepared by an auto-oxidation method via hydrogenation in a microreactor. A working solution containing a reactive carrier compound is hydrogenated with hydrogen in a microreactor and is subsequently auto-oxidized to produce hydrogen peroxide.
摘要:
The microfluidic system is constituted of modules that comprise one microfluidic unit and one corresponding electric control unit each and that are retained on a rear panel unit next to each other in a row. To prevent the formation of accumulation of ignitable or toxic gas mixtures a fluid conduit for a rinsing fluid extends through the rear panel unit. Branches lead from said fluid conduit to the modules, and said branches flowing into respective distributor compartments that extend vertically across the module height in the modules. Said distributor compartments are delimited in relation to the interior of the respective module by a distributor panel that is provide with openings. The interior of the respective module comprises, on its lower or rear surface, an exit opening for the rinsing fluid.
摘要:
Hydrogen peroxide is prepared by an auto-oxidation method via hydrogenation in a microreactor. A working solution containing a reactive carrier compound is hydrogenated with hydrogen in a microreactor and is subsequently auto-oxidized to produce hydrogen peroxide.
摘要:
A test unit for the study of catalysts in short contact time reactions between a catalyst and at least one reagent, with a down transported flow reactor (4), with a load inlet (13, 13a, 13b) and a discharge outlet (14) linked with an admission inlet (15) to an upper chamber (39) of a separator (5) internally divided into an upper chamber (39) and a lower chamber (41) by a porous element (40) that is permeable to gases and impermeable to solid particles of catalyst, and a first preheater (1) provided with an outlet (2, 2a) connected with the inlet (13, 13a, 13b) of the reactor (4) via a load duct (42) in such a way that arranged between the outlet (2, 2a) and the load inlet (13, 13a, 13b) are some obturator means (3, 3a) in which the catalyst is heated to a desired temperature before they are loaded into the reactor (4).
摘要:
The present invention generally relates to chemical, biological, and/or biochemical reactor microreactors and other reaction systems such as microreactor systems, as well as systems and methods for constructing and using such devices. In one aspect, a reactor on a chip has a container in fluid communication with a channel, and the channel is in fluid communication with a port for connecting the container to a source of fluid to be introduced into the container. The container can be very small, for example, with a volume of less than about 2 milliliters, and the fluid channel can have a channel volume of less than 1.5 percent of the container volume. According to another aspect, the combined volume of the port volume and the channel volume can be less than about 10 percent of the container volume. Such a configuration may increase the percentage of added fluid that reaches the container. In fed-batch operations, species may be added and removed via the same channel so that a gas headspace can be maintained within the reactor.
摘要:
The present invention includes a removable microchannel unit including an inlet orifice and an outlet orifice in fluid communication with a plurality of microchannels distributed throughout the removable microchannel unit, and a pressurized vessel adapted have the removable microchannel unit mounted thereto, the pressurized vessel adapted to contain a pressurized fluid exerting a positive gauge pressure upon at least a portion of the exterior of the removable microchannel unit. The invention also includes a microchannel unit assembly comprising a microchannel unit operation carried out within a pressurized vessel, where pressurized vessel includes a pressurized fluid exerting a positive gauge pressure upon an exterior of the microchannel unit operation, and where the microchannel unit operation includes an outlet orifice in fluid communication with an interior of the pressurized vessel.