Abstract:
A non-volatile semiconductor memory device includes a semiconductor substrate, a memory cell including source and drain regions formed in a surface region of the semiconductor substrate, and a first gate insulating film, a charge storage layer, a second gate insulating film, and a control gate sequentially stacked on the semiconductor substrate, the memory cell being capable of electrically rewriting data by exchanging charges between the charge storage layer and the semiconductor substrate, and a means for applying a high potential to the semiconductor substrate and an intermediate potential to the control gate in a first data erase operation, and applying a high potential to the semiconductor substrate and a low potential to the control gate in second and subsequent data erase operations, thereby removing electrons from the charge storage layer.
Abstract:
An error correction/detection circuit including a syndrome generating circuit for generating a syndrome from information data and check data input in a first cycle; and an error position/size calculating circuit for calculating a position and a size of an error from said syndrome; and an error correction circuit for correcting an error for at least information data input in a second cycle on a basis of the position and the size of the error obtained in said error position/size calculating circuit and for outputting at least error-corrected information data.
Abstract:
A non-volatile semiconductor memory device includes a semiconductor substrate, a memory cell including source and drain regions formed in a surface region of the semiconductor substrate, and a first gate insulating film, a charge storage layer, a second gate insulating film, and a control gate sequentially stacked on the semiconductor substrate, the memory cell being capable of electrically rewriting data by exchanging charges between the charge storage layer and the semiconductor substrate, and a means for applying a high potential to the semiconductor substrate and an intermediate potential to the control gate in a first data erase operation, and applying a high potential to the semiconductor substrate and a low potential to the control gate in second and subsequent data erase operations, thereby removing electrons from the charge storage layer.
Abstract:
A non-volatile semiconductor memory device includes read charging transistors for setting bit lines at a predetermined read potential to perform a data read operation, and read discharging transistors for setting non-selected bit lines at the ground potential during the read operation. These transistors are controlled by different control signals, obtained by detecting an address change, for every other bit line in accordance with an input address so that the read discharging transistors are kept ON to set the non-selected bit lines at the ground potential before and during the data read operation.
Abstract:
A NAND cell type EEPROM has bit lines, each of which is associated with a NAND cell unit including a series array of four memory cell transistors. Each transistor is a MOSFET with a control gate and a floating gate for data storage. The memory cell transistors are connected at their control gates to word lines, respectively. One end of the NAND cell unit is connected through a first select transistor to a corresponding bit line; the other end thereof is connected via a second select transistor to a source voltage. The memory cell transistors and the select transistors are arranged in a well region formed in a substrate. In an erase mode, the bit line voltage, the substrate voltage and the well voltage are held at a high voltage, whereas the word lines are at zero volts. The gate potential of the select transistors is held at the high voltage, whereby the internal electric field of these select transistors is weakened to improve the dielectric breakdown characteristic thereof.
Abstract:
A charge-pump system with an improved oscillation circuit. An electrically programmable non-volatile semiconductor memory device having the charge-pump system with the improved oscillation circuit includes a memory system equipped with a memory circuit having a non-volatile memory function, a oscillating circuit for generating an signal having a frequency which is increased in response to a decrease of a power supply voltage, and a charge-pump circuit which generates a voltage required to write data into or erase data from memory by charge-pumping the power supply voltage according to the signal generated by the oscillating circuit. A ring oscillator serves as the oscillating circuit and the ring oscillator is constituted of a group of inverter circuits connected circularly to one another via a MOS transistor which serves to transfer an electric charge, a gate electrode of the MOS transistor being connected to an output terminal of a voltage converting circuit which increases a transfer capacity of the MOS transistor as the power supply voltage decreases.
Abstract:
An EEPROM includes an array of memory cell transistors, which is divided into cell blocks each including NAND cell units of series-connected cell transistors. A sense amplifier is connected to bit lines and a comparator. A data-latch circuit is connected to the comparator, for latching a write-data supplied from a data input buffer. After desired cell transistors selected for programming in a selected block are once programmed, a write-verify operation is performed. The comparator compares the actual data read from one of the programmed cell transistors with the write-data, to verify its written state. The write-verify process checks the resulting threshold voltage for variations using first and second reference voltages defining the lower-limit and upper-limit of an allowable variation range. If the comparison results under employment of the first voltage shows that an irregularly written cell transistor remains with an insufficient threshold voltage which is so low as to fail to fall within the range, the write operation continues for the same cell transistor. If the comparison results under employment of the second voltage shows that an excess-written cell transistor remains, the block is rendered "protected" at least partially.
Abstract:
A semiconductor device based on SiC-MOSFET realizes high voltage endurance, high current, low breakover voltage, low switching loss and low noise. The SiC-MOSFET is a combination of a Si-MOSFET with high channel mobility and a drift layer formed by SiC with high bulk mobility, so that the first conductive SiC wafer forming the drift layer joins the second conductive Si wafer, excavates out a trench gate in part of the SiC to make the MOSFET, and a second conductive barrier layer is arranged in the Si region adjacent to the SiC.
Abstract:
A semiconductor device based on SiC-MOSFET realizes high voltage endurance, high current, low breakover voltage, low switching loss and low noise. The SiC-MOSFET is a combination of a Si-MOSFET with high channel mobility and a drift layer formed by SiC with high bulk mobility, so that the first conductive SiC wafer forming the drift layer joins the second conductive Si wafer, excavates out a trench gate in part of the SiC to make the MOSFET, and a second conductive barrier layer is arranged in the Si region adjacent to the SiC.
Abstract:
A nitride semiconductor transistor device is disclosed to provide a normally-off nitride semiconductor transistor device which is excellent in switching properties with less dispersion of the properties. The nitride semiconductor transistor device has a buffer layer, a GaN layer, and an AlGaN layer in turn grown on a substrate. A first insulating film, a charge storage layer, a second insulating film, and a control electrode are in turn grown on the AlGaN layer. A source electrode and a drain electrode are formed to sandwich the charge storage layer over the AlGaN layer. A threshold voltage to shut off an electric current flowing between the source and drain electrodes through a conductive channel induced at an interface of the AlGaN layer and the GaN layer is made positive by adjusting charge stored in the charge storage layer.