Abstract:
The present invention includes composite support substrate for both flexible and rigid board circuit applications and method of making the same. The composite substrate is composed of at least two materials formed under the circuitry. A first material is a conventional matrix such as a polyimide/acrylic adhesive, and a second material having unique properties that are useful locally in isolated locations. For instance, the second material may be nonporous to moisture, optically clear, and/or thermally conductive. The second material is integrated into the circuit matrix at specific localized areas where desired with portions coplanar with the first material so that circuit traces remain continuous as they pass from the first material to the second. For example, an integrated circuit chip may be isolated from the polyimide matrix, which is porous in moisture, by using the second material that is nonporous to moisture at locations where the integrated circuit chip is to be attached, thus isolating the integrated circuit chip from the polyimide and preventing moisture from flowing through to the chip.
Abstract:
A method of making a laminated substrate by forming a registration mark on a core layer of the substrate. Then, forming a first layer on the core layer using the registration mark as a fiducial registration point. The first layer is laser drilled through to expose the registration mark on the core layer. A second layer is then formed on the first layer using the registration mark as a fiducial point.
Abstract:
Provided is a composite film comprising a continuous phase of para-oriented aromatic polyamide and a phase of low-dielectric resin, said film having a dielectric constant at 1 MHz of not more than 3.2 and a linear thermal expansion coefficient at 200 to 300.degree. C. of within .+-.50.times.10.sup.-6 /.degree.C. The composite film has characteristics such as a low dielectric constant, favorable mechanical strength, homogeneous structure, light weight, and a low linear thermal expansion coefficient, and the film is useful as a base substrate for a flexible printed circuit board.
Abstract:
A laminate capable of mounting semiconductor elements thereon; comprising an insulating layer which is constituted by a resin portion of sea-island structure and a woven reinforcement. The resin portion of sea-island structure is, for example, such that a resin as islands are dispersed in a resin as a matrix. Thus, the insulating layer exhibits a coefficient of thermal expansion of 3.0.about.10 (ppm/K) in a planar direction thereof and a glass transition temperature of 150.about.300 (.degree.C.). Owing to these physical properties, thermal stresses which the laminate undergoes in packaging the semiconductor elements thereon can be reduced, so that the connections of the laminate with the semiconductor elements can be made highly reliable.
Abstract:
A polymeric composition which has a dielectric constant K' greater than 4 at 20.degree. C. which varies little with temperature is made from a polymer or mixture of polymers and a ceramic or a mixture of ceramics, where the polymer or mixture of polymers has a dielectric constant K' in the range of about 1.5 to about 3.5 and a temperature coefficient of dielectric constant TCK' that is negative and is between 0 and about -300 ppm/degree C.; and the ceramic includes a first ceramic, which may be one ceramic or a mixture of ceramics, each having a dielectric constant in the range of about 15 to about 200 and a TCK' that is positive and is between zero and about 3000 ppm/degree C.; and an optional second ceramic, which may be one ceramic or a mixture of ceramics, each having a dielectric constant in the range from about 3 up to about 15 and a TCK' that is positive and is between zero and about 300 ppm/degree C.
Abstract:
The present invention is a cyanate resin monomer having the formula:NCO--CH.sub.2 --(CF.sub.2).sub.n --CH.sub.2 --OCNwhere n is an even integer from 6 to 10, inclusive.Another aspect of the invention is an essentially pure cyanate resin mono having the formula:NCO--CH.sub.2 --(CF.sub.2).sub.n --CH.sub.2 --OCNwhere n=3, 4, 6, 8, or 10. Another aspect of the invention is a prepolymer made by the process of heating a monomer of the invention to a conversion below the gel point. Another aspect of the invention is a method for depositing an interlevel dielectric resin on an integrated circuit, having the steps: (a) coating the integrated circuit with a thin film of a prepolymer made by the process of heating a monomer of the invention to below the gel point, and (b) curing the prepolymer to at least the gel point. Another aspect of the invention is a low dielectric thermoset polymer resin made from these monomers. Another aspect of the invention is a composite of a resin of the invention combined with another material or materials, for structural and/or electronic applications. Such materials include powders and fibers made from, e.g., fused silica or quartz. Another aspect of the invention is making and purifying the monomers of the invention.
Abstract:
An in situ method for forming a bypass capacitor element internally within a PCB including the steps of arranging one or more uncured dielectric sheets with conductive foils on opposite sides thereof and laminating the conductive foils to the dielectric sheet simultaneously as the PCB is formed by a final lamination step, the conductive foils preferably being laminated to another layer of the PCB prior to their arrangement adjacent the dielectric sheet or sheets, the dielectric foils even more preferably being initially laminated to additional dielectric sheets in order to form multiple bypass capacitive elements as a compound subassembly within the PCB. A number of different dielectric materials and resins are disclosed for forming the capacitor element. A dielectric component in the capacitor element preferably includes dielectric material and thermally responsive material, the thermally responsive material either forming a carrier for the dielectric material or formed as two separate sheets on opposite sides of a sheet of the dielectric material.
Abstract:
A method for low temperature attachment of components is provided which uses an electrically conductive adhesive. The electrically conductive adhesive may be defined by a substrate having numerous passageways through the substrate. The passageways are defined by a plurality of walls of the material making up the substrate. The walls are covered with a layer of conductive metal. The passageways at the outer surfaces are filled with a non-conductive pressure sensitive adhesive resin.