Abstract:
Methods and apparatus for reducing energy contamination can be provided to a beam line assembly for ion implantation. Protrusions comprising surface areas and grooves therebetween can face neutral trajectories within a line of sight view from the workpiece within the beam line assembly. The protrusions can alter the course of the neutral trajectories away from the workpiece or cause alternate trajectories for further impacting before hitting a workpiece, and thereby, further reduce energy contamination for more sensitive implants.
Abstract:
The present disclosure provides for various advantageous methods and apparatus of controlling electron emission. One of the broader forms of the present disclosure involves an electron emission element, comprising an electron emitter including an electron emission region disposed between a gate electrode and a cathode electrode. An anode is disposed above the electron emission region, and a voltage set is disposed above the anode. A first voltage applied between the gate electrode and the cathode electrode controls a quantity of electrons generated from the electron emission region. A second voltage applied to the anode extracts generated electrons. A third voltage applied to the voltage set controls a direction of electrons extracted through the anode.
Abstract:
An apparatus provided with a wafer processing chamber that houses a wafer supporting mechanism supporting a wafer and is used to irradiate the wafer supported by the wafer supporting mechanism with an ion beam and a transport mechanism housing chamber that houses a transport mechanism provided underneath the wafer processing chamber and used for moving the wafer supporting mechanism in a substantially horizontal direction, wherein an aperture used for moving the wafer supporting mechanism along with a coupling member coupling the wafer supporting mechanism to the transport mechanism is formed in the direction of movement of the transport mechanism in a partition wall separating the wafer processing chamber from the transport mechanism housing chamber.
Abstract:
A method of ion implantation is disclosed. A beam of ions is accelerated to a first energy level. The beam of ions is decelerated from the first energy level to produce a contamination beam of ions via an ion collision process. The ions of the contamination beam are implanted in a substrate to obtain a selected dopant profile in the substrate.
Abstract:
The problem of the present invention is to provide, in high current-low energy type ion implantation apparatuses, a graphite member for a beam line inner member of an ion implantation apparatus, which graphite member can markedly reduce particles incorporated in a wafer surface. This problem can be solved by the graphite member of the present invention, which is a graphite member for a beam line inner member of an ion implantation apparatus, which member having a bulk density of not less than 1.80 Mg/m3 and an electric resistivity of not more than 9.5 μΩ·m. Preferably, the R value obtained by dividing D band intensity at 1370 cm−1 by G band intensity at 1570 cm−1 in the Raman spectrum of a spontaneous fracture surface of the graphite member is not more than 0.20.
Abstract:
A system and method for magnetically filtering an ion beam during an ion implantation into a workpiece is provided, wherein ions are emitted from an ion source and accelerated the ions away from the ion source to form an ion beam. The ion beam is mass analyzed by a mass analyzer, wherein ions are selected. The ion beam is then decelerated via a decelerator once the ion beam is mass-analyzed, and the ion beam is further magnetically filtered the ion beam downstream of the deceleration. The magnetic filtering is provided by a quadrapole magnetic energy filter, wherein a magnetic field is formed for intercepting the ions in the ion beam exiting the decelerator to selectively filter undesirable ions and fast neutrals.
Abstract:
An apparatus is provided for reducing particle contamination in an ion implantation system. The apparatus has an enclosure having an entrance, an exit, and at least one louvered side having a plurality of louvers defined therein. A beamline of the ion implantation system passes through the entrance and exit, wherein the plurality of louvers of the at least one louvered side are configured to mechanically filter an edge of an ion beam traveling along the beamline. The enclosure can have two louvered sides and a louvered top, wherein respective widths of the entrance and exit of the enclosure, when measured perpendicular to the beamline, are generally defined by a position of the two louvered sides with respect to one another. One or more of the louvered sides can be adjustably mounted, wherein the width of one or more of the entrance and exit of the enclosure is controllable.
Abstract:
Ion implantation with high brightness, ion beam by ionizing gas or vapor, e.g. of dimers, or decaborane, by direct electron impact ionization adjacent the outlet aperture (46, 176) of the ionization chamber (80; 175)). Preferably: conditions are maintained that produce a substantial ion density and limit the transverse kinetic energy of the ions to less than 0.7 eV; width of the ionization volume adjacent the aperture is limited to width less than about three times the width of the aperture; the aperture is extremely elongated; magnetic fields are avoided or limited; low ion beam noise is maintained; conditions within the ionization chamber are maintained that prevent formation of an arc discharge. With ion beam optics, such as the batch implanter of FIG. (20), or in serial implanters, ions from the ion source are transported to a target surface and implanted; advantageously, in some cases, in conjunction with acceleration-deceleration beam lines employing cluster ion beams. Also disclosed are electron gun constructions, ribbon sources for electrons and ionization chamber configurations. Forming features of semiconductor devices, e.g. drain extensions of CMOS devices, and doping of flat panels are shown.
Abstract:
An ion implanter includes an electrostatic chuck. The electrostatic chuck is configured to repel charged particles from a surface of the electrostatic chuck to limit deposits of the charged particles on the surface when the electrostatic chuck is not supporting any workpiece. An electrostatic chuck including a dielectric layer and at least one electrode is also provided. The at least one electrode is configured to accept a DC voltage signal to produce a first charge to repel charged particles from the dielectric layer when the dielectric layer is not supporting any workpiece to thereby limit deposits of the charged particles on the dielectric layer.
Abstract:
The problem of the present invention is to provide, in high current-low energy type ion implantation apparatuses, a graphite member for a beam line inner member of an ion implantation apparatus, which graphite member can markedly reduce particles incorporated in a wafer surface. This problem can be solved by the graphite member of the present invention, which is a graphite member for a beam line inner member of an ion implantation apparatus, which member having a bulk density of not less than 1.80 Mg/m3 and an electric resistivity of not more than 9.5 μΩ·m. Preferably, the R value obtained by dividing D band intensity at 1370 cm−1 by G band intensity at 1570 cm−1 in the Raman spectrum of a spontaneous fracture surface of the graphite member is not more than 0.20.