Abstract:
A performance of a sample holder 1 used in a charged particle beam device is improved. A shield plate 2 is connected to a sample stand 7. A sample stand 7 is provided with a pressing member 5 that can move in a direction perpendicular to the shield plate 2 in a state in which the pressing member is attached to the sample stand 7, and has a bar shape. A sample supporting member 4 connected to the pressing member 5 is provided at a position facing the shield plate 2. A spring 6 is provided along an outer circumference of the pressing member 5 and is connected to the sample supporting member 4 and the sample stand 7.
Abstract:
The present invention relates to a technology for increasing the reliability of measurement by preventing the contamination of a self-plasma chamber provided in order to monitor a deposition operation performed in a process chamber, and has a shielding means capable of preventing an inflow of negative electrode material, which is generated by a sputtering phenomenon, into a discharge chamber when a positive charge of plasma, which is generated in the self-plasma chamber, collides with a negative electrode.
Abstract:
A photoelectric surface electron source includes a glass substrate configured to receive laser light incident from a substrate back surface to emit the laser light from a substrate main surface, a photoelectric surface provided on the substrate main surface and configured to receive the laser light and emit a photoelectron, a lens array disposed on the substrate back surface and including a plurality of microlenses for condensing the laser light toward the photoelectric surface, and a light shielding portion provided on the glass substrate. The light shielding portion has a back surface-side light shielding layer provided on a back surface-side light shielding surface interposed between the plurality of microlenses on the substrate back surface, and a main surface-side light shielding layer provided on a main surface-side light shielding surface.
Abstract:
The invention provides an ion milling device capable of cross-sectional milling on an all-solid-state battery while reducing an occurrence of a short circuit due to a redeposition film. The ion milling device includes a sample stage 5 on which a sample 8 is placed, an ion source 1 configured to emit an unfocused ion beam 4 toward the sample, a stage controller 6 configured to cause the sample stage to perform a swing operation centered on a swing axis S0 set to be orthogonal to an ion beam center B0 of the ion beam, and cause the sample stage to perform a sliding operation along a line of intersection between a plane (YZ plane) including the ion beam center and perpendicularly intersecting the swing axis and a sample placement surface of the sample stage, in which the stage controller causes, in a first mode operation, the sample stage to perform the swing operation and the ion source to emit the ion beam to mill the sample, and causes in a second mode operation, the sample stage to perform the sliding operation and the ion source to emit the ion beam to remove sputter particles adhered again to the sample in the first mode operation.
Abstract:
A holding device for holding a plurality of substrates for plasma-enhanced deposition of a layer from the gas phase on the substrates, having: inner carrier plates, arranged parallel to one another and designed to carry substrates on mutually opposite sides; outer carrier plates, arranged parallel to the inner carrier plates and having an inner side facing the inner carrier plates, and an outer side facing away from the inner carrier plates, wherein each outer carrier plate is designed to carry one or more substrates on its inner side and to be free of substrates on its outer side; and shielding plates which are each arranged at a distance from the outer side of the outer carrier plate such that, as seen in a plan view of the outer carrier plates, the shielding plates at least predominantly shield the outer carrier plates, wherein each shielding plate is free of substrates.
Abstract:
Even in a case where a disturbance is applied from an adjacently disposed power supply circuit or the like, in order to realize a reduction in ripple, a high-voltage power supply device is configured to include a drive circuit, a transformer that boosts an output voltage of the drive circuit, a boost circuit that further boosts a voltage boosted by the transformer, a shield that covers the transformer and the boost circuit, a filter circuit that filters, smoothes, and outputs a high voltage output from the boost circuit, and an impedance loop circuit configured by connection of a plurality of impedance elements into a loop shape. A grounding point of the boost circuit, a grounding point of the shield, and a grounding point of the filter circuit are configured to be grounded via the impedance loop circuit, and this is applied to a high-voltage power supply unit that applies a high voltage to an electron gun of a charged particle beam apparatus.
Abstract:
A sputtering apparatus includes a space defining member defining a sputtering space for forming a film on a substrate. The space defining member includes a concave portion, and an opening portion is provided in the bottom portion of the concave portion. The sputtering apparatus includes a shield member configured to shield the opening portion from the sputtering space. The opening portion is formed so that a pressure gauge capable of measuring the pressure in the sputtering space can be attached, and the shield member is arranged so that at least a part of the shield member is buried in the concave portion.
Abstract:
Disclosed herein a light source apparatus that is capable of suppressing a light transmission rate of a debris trap to be lowered and a reflection rate in a light condenser mirror to be lowered. In the light source apparatus, a shielding member is provided having an aperture is provided in front of a stationary type foil trap to limit a solid angle of light emitted from a high temperature plasma. Furthermore, the stationary type foil trap is provided with a driving mechanism to allow the foil trap to be revolved such that an adhesion part of the debris of the foil trap is deviated from a position of the foil trap facing the aperture.
Abstract:
A lithograph apparatus that performs writing on a substrate with a plurality of charged particle beams. A blanking deflector array blanks the plurality of charged particle beams. An aperture array blocks n charged particle beam deflected by the blanking deflector array. A sealing mechanism seals an opening or at least one of the blanking deflector array and the aperture array with a shielding material that shields a charged particle beam. A moving mechanism moves the substrate so that the writing is performed with a blankable charged particle beam instead of an unblankable charged particle beam shielded by the shielding material.
Abstract:
An apparatus for extending the useful life of an ion source, comprising an arc chamber containing a plurality of cathodes to be used sequentially and a plurality of repellers to protect cathodes when not in use. The arc chamber includes an arc chamber housing defining a reaction cavity, gas injection openings, a plurality of cathodes, and at least one repeller element. A method for extending the useful life of an ion source includes providing power to a first cathode of an arc chamber in an ion source, operating the first cathode, detecting a failure or degradation in performance of the first cathode, energizing a second cathode, and continuing operation of the arc chamber with the second cathode.