摘要:
A bonded body is provided in which an aluminum alloy member formed from an aluminum alloy, and a metal member formed from copper, nickel, or silver are bonded to each other. The aluminum alloy member is constituted by an aluminum alloy in which a concentration of Si is in a range of 1 mass % to 25 mass %. The aluminum alloy member and the metal member are subjected to solid-phase diffusion bonding. A compound layer, which is formed through diffusion of Al of the aluminum alloy member and a metal element of the metal member, is provided at a bonding interface between the aluminum alloy member and the metal member. A Mg-concentrated layer, in which a concentration of Mg is to 3 mass % or greater, is formed at the inside of the compound layer, and the thickness of the Mg-concentrated layer is in a range of 1 μm to 30 μm.
摘要:
In one aspect, articles are described herein comprising refractory coatings employing alumina-based hybrid nanocomposite architectures. A coated article described herein comprises a substrate and a coating deposited by CVD adhered to the substrate, the coating including a composite refractory layer having a matrix phase comprising alumina and at least one particulate phase within the matrix phase, the particulate phase comprising nanoscale to submicron particles formed of at least one of an oxycarbide and oxycarbonitride of one or more metals selected from the group consisting of aluminum and Group IVB metals.
摘要:
A bonded body is provided in which an aluminum alloy member formed from an aluminum alloy, and a metal member formed from copper, nickel, or silver are bonded to each other. The aluminum alloy member is constituted by an aluminum alloy in which a concentration of Si is in a range of 1 mass % to 25 mass %. The aluminum alloy member and the metal member are subjected to solid-phase diffusion bonding. A compound layer, which is formed through diffusion of Al of the aluminum alloy member and a metal element of the metal member, is provided at a bonding interface between the aluminum alloy member and the metal member. A Mg-concentrated layer, in which a concentration of Mg is to 3 mass % or greater, is formed at the inside of the compound layer, and the thickness of the Mg-concentrated layer is in a range of 1 μm to 30 μm.
摘要:
A method for the joining of ceramic pieces with a hermetically sealed joint comprising brazing a layer of joining material between the two pieces. The wetting and flow of the joining material is controlled by the selection of the joining material, the joining temperature, the joining atmosphere, and other factors. The ceramic pieces may be on a non-diffusable type, such as aluminum nitride, alumina, beryllium oxide, and zirconia, and the pieces may be brazed with an aluminum alloy under controlled atmosphere. The joint material is adapted to later withstand both the environments within a process chamber during substrate processing, and the oxygenated atmosphere which may be seen within the shaft of a heater or electrostatic chuck.
摘要:
A metal-ceramic substrate having at least one ceramic layer (2), which is provided on a first surface side (2a) with at least one first metallization (3) and on a second surface side (2b), opposite from the first surface side (2a), with a second metallization (4), wherein the first metallization (3) is formed by a film or layer of copper or a copper alloy and is connected to the first surface side (2a) of the ceramic layer (2) with the aid of a “direct copper bonding” process. The second metallization (4) is formed by a layer of aluminum or an aluminum alloy.
摘要:
Provided is a target formed of a sintering-resistant material of high-melting point metal alloy, high-melting point metal silicide, high-melting point metal carbide, high-melting point metal nitride or high-melting point metal boride comprising a structure in which a target material formed of a sintering-resistant material of high-melting point metal alloy, high-melting point metal silicide, high-melting point metal carbide, high-melting point metal nitride or high-melting point metal boride and a high-melting point metal plate other than the target material are bonded. Additionally provided is a production method of such a target capable of producing, with relative ease, a target formed of a sintering-resistant material of high-melting point metal alloy, high-melting point metal silicide, high-melting point metal carbide, high-melting point metal nitride or high-melting point metal boride, which has poor machinability, can relatively easily produced. Further the generation of cracks during the target production and high power sputtering, and the reaction of the target raw material with the die during hot pressing can be inhibited effectively, and the warpage of the target can be reduced.
摘要:
A power-module substrate including a circuit layer having a first aluminum layer bonded on one surface of a ceramic substrate and a first copper layer bonded on the first aluminum layer by solid-phase-diffusion bonding, and a metal layer having a second aluminum layer made from a same material as the first aluminum layer and bonded on the other surface of the ceramic substrate and a second copper layer made from a same material as the first copper layer and bonded on the second aluminum layer by solid-phase-diffusion bonding, in which a thickness t1 of the first copper layer is 1.7 mm to 5 mm, a sum of the thickness t1 of the first copper layer and a thickness t2 of the second copper layer is 7 mm or smaller, and a ratio t2/t1 is larger than 0 and 1.2 or smaller except for a range of 0.6 to 0.8.
摘要:
The bonded body of the present invention includes: a ceramic member made of ceramics; and a Cu member which is made of Cu or a Cu alloy and bonded to the ceramic member through a Cu—P—Sn-based brazing filler material and a Ti material, wherein a Cu—Sn layer, which is positioned close to the ceramic member and in which Sn forms a solid solution with Cu, and an intermetallic compound layer which is positioned between the Cu member and the Cu—Sn layer and contains P and Ti, are formed at a bonded interface between the ceramic member and the Cu member.
摘要:
A polycrystalline diamond compact made from a high pressure, high temperature process is provided. The compact includes a metal carbide substrate including a binder and at least one inner layer of polycrystalline diamond disposed on the substrate. The polycrystalline diamond has a diamond phase and a metal phase forming an interconnected mutually exclusive network. The metal phase is a material different than that of the binder of the substrate to provide improved diamond sintering and final polycrystalline diamond compact properties. Prior to processing at least one coating is disposed on the substrate, and the layer of diamond particles is disposed on the at least one coating. During the high pressure, high temperature process the coating melts and fully sweeps into the diamond layer.
摘要:
A bonded, boron carbide-containing ceramic body includes ceramic members. These ceramic members each contain boron carbide at 2 mass % or higher, and are integrated together via a bonding layer bonded with a bonding material containing at least one metal selected from the group consisting of aluminum, copper, gold and zirconium or integrated together via a bonding layer formed from one of aluminum metal and an aluminum compound and a titanium compound as bonding materials, wherein a bonded part has a strength of 100 MPa or higher. According to this technology, the boron carbide-containing ceramic members can be bonded together with a high strength of 100 MPa or more by a simple process, and further, the bonding is feasible with excellent chemical resistance at the bonded part as needed.