Abstract:
A semiconductor device includes first and second Fin FET transistors and a separation plug made of an insulating material and disposed between the first and second Fin FET transistors. The first Fin FET transistor includes a first fin structure extending in a first direction, a first gate dielectric formed over the first fin structure and a first gate electrode formed over the first gate dielectric and extending a second direction perpendicular to the first direction. The second Fin FET transistor includes a second fin structure, a second gate dielectric formed over the second fin structure and a second gate electrode formed over the first gate dielectric and extending the second direction. In across section along the second direction and across the first gate electrode, the second gate electrode and the separation plug, the separation plug has a tapered shape having atop size smaller than a bottom size.
Abstract:
A fin field effect transistor (FinFET) device structure and method for forming FinFET device structure is provided. The FinFET device structure includes a substrate and a first fin structure and a second fin structure extending above the substrate. The FinFET device structure also includes a first transistor formed on the first fin structure and a second transistor formed on the second fin structure. The FinFET device structure further includes an inter-layer dielectric (ILD) structure formed in an end-to-end gap between the first transistor and the second transistor, and the end-to-end gap has a width in a range from about 20 nm to about 40 nm.
Abstract:
A device includes a semiconductor fin semiconductor fin extending from a substrate, a gate structure extending across the semiconductor fin, and a multilayer gate spacer on a sidewall of the gate structure. The multilayer gate spacer includes an inner spacer layer, an outer spacer layer, and a dielectric structure. The inner spacer layer has a vertical portion extending along the sidewall of the gate structure, and a lateral portion laterally extending from the vertical portion in a direction away from the gate structure. The outer spacer layer is spaced apart from the vertical portion of the inner spacer layer by an air gap. The dielectric structure spaces apart a bottom end of the outer spacer layer from the lateral portion of the inner spacer layer.
Abstract:
A semiconductor device includes a semiconductor fin extending from a substrate, and a gate structure extending across the semiconductor fin. From a plan view, the semiconductor fin includes a first sidewall, a second sidewall opposing the first sidewall, an end surface extending along a different direction than the first sidewall and the second sidewall, and a first corner portion connecting the first sidewall and the end surface. The first corner portion is more rounded than the first sidewall and the end surface.
Abstract:
An interconnection structure comprises a first metal structure, a first dielectric layer, a second dielectric layer, a second metal structure, a first protective layer, and a second protective layer. The first dielectric layer is over the first metal structure. The second dielectric layer is over the first dielectric layer. The second metal structure has an upper portion extending through the second dielectric layer, and a lower portion extending through the first dielectric layer. The upper portion has a width greater than a width of the lower portion. The first protective layer spaces the first dielectric layer apart from the lower portion of the second metal structure. The second protective layer spaces the second dielectric layer apart from the upper portion of the second metal structure, and has a top width greater than a top width of the first protective layer.
Abstract:
A device includes a substrate, a shallow trench isolation (STI) structure, an isolation structure, and a gate stack. The substrate has a semiconductor fin. The shallow trench isolation (STI) structure is over the substrate and laterally surrounding the semiconductor fin. The isolation structure is disposed on a top surface of the STI structure. The gate stack crosses the semiconductor fin, over the STI structure, and in contact with a sidewall the isolation structure, in which the gate stack includes a high-k dielectric layer extending from a sidewall of the semiconductor fin to the top surface of the STI structure and terminating prior to reaching the sidewall of the isolation structure, and in which the high-k dielectric layer is in contact with the top surface of the STI structure.
Abstract:
A semiconductor device includes a substrate, a FinFET, and an insulating structure. The FinFET includes a fin, a gate electrode, and a gate dielectric layer. The fin is over the substrate. The gate electrode is over the fin. The gate dielectric layer is between the gate electrode and the fin. The insulating structure is over the substrate, adjacent the fin, and has a top surface lower than a top surface of the fin. The top surface of the insulating structure has opposite first and second edge portions and an intermediate portion between the first and second edge portions. The first edge portion of the top surface of the insulating structure is lower than the intermediate portion of the top surface of the insulating structure.
Abstract:
A method of forming an interconnection structure includes following steps. A dielectric structure is deposited over a non-insulator structure. The dielectric structure is etched to form a via opening. A mask layer is formed over the dielectric structure. The mask layer is patterned. An anti-adhesion layer is deposited on a sidewall of the via opening after patterning the mask layer. The dielectric structure is etched to form a trench opening, wherein the patterned mask layer is used as an etch mask during forming the trench opening. A conductive structure is formed in the via opening and the trench opening.
Abstract:
A Fin FET semiconductor device includes a fin structure extending in a first direction and extending from an isolation insulating layer. The Fin FET device also includes a gate stack including a gate electrode layer, a gate dielectric layer, side wall insulating layers disposed at both sides of the gate electrode layer, and interlayer dielectric layers disposed at both sides of the side wall insulating layers. The gate stack is disposed over the isolation insulating layer, covers a portion of the fin structure, and extends in a second direction perpendicular to the first direction. A recess is formed in an upper surface of the isolation insulating layer not covered by the side wall insulating layers and the interlayer dielectric layers. At least part of the gate electrode layer and the gate dielectric layer fill the recess.
Abstract:
A semiconductor device includes a substrate, a core device disposed above the substrate, and an input/output (I/O) device disposed above the substrate. The core device includes a first gate electrode having a bottom surface and a sidewall that define a first interior angle therebetween. The first interior angle is an obtuse angle. The I/O device includes a second gate electrode having a bottom surface and a sidewall that define a second interior angle therebetween. The second interior angle is greater than the first interior angle.