Abstract:
A magnetic material may include α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16N2 and α″-Fe16Z2, where Z includes at least one of C, B, or O, and x is a number greater than zero and less than one. In some examples, the magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16N2 and α″-Fe16Z2 may include a relatively high magnetic saturation, such as greater than about 219 emu/gram, greater than about 242 emu/gram, or greater than about 250 emu/gram. In addition, in some examples, the magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16N2 and α″-Fe16Z2 may include a relatively low coercivity. Techniques for forming the magnetic material are also described.
Abstract:
An inductor may include a magnetic material that may include α″-Fe16(NxZ1-x)2 or α′-Fe8(NxZ1-x), or a mixture of at least one of α″-Fe16N2 or α′-Fe8N and at least one of α″-Fe16Z2 or α′-Fe8Z, where Z includes at least one of C, B, or O, and x is a number greater than zero and less than one. In some examples, the magnetic material may include a relatively high magnetic saturation, such as greater than about 200 emu/gram, greater than about 242 emu/gram, or greater than about 250 emu/gram. In addition, in some examples, the magnetic material may include a relatively low coercivity or magnetocrystalline anisotropy. Techniques for forming the inductor including the magnetic material are also described.
Abstract:
Nanoparticle deposition systems including one or more of: a hollow target of a material; at least one rotating magnet providing a magnetic field that controls movement of ions and crystallization of nanoparticles from released atoms; a nanoparticle collection device that collects crystallized nanoparticles on a substrate, wherein relative motion between the substrate and at least a target continuously expose new surface areas of the substrate to the crystallized nanoparticles; a hollow anode with a target at least partially inside the hollow anode; or a first nanoparticle source providing first nanoparticles of a first material and a second nanoparticle source providing second nanoparticles of a second material.
Abstract:
A magnetic material may include α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16N2 and α″-Fe16Z2, where Z includes at least one of C, B, or O, and x is a number greater than zero and less than one. In some examples, the magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16N2 and α″-Fe16Z2 may include a relatively high magnetic saturation, such as greater than about 219 emu/gram, greater than about 242 emu/gram, or greater than about 250 emu/gram. In addition, in some examples, the magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16N2 and α″-Fe16Z2 may include a relatively low coercivity. Techniques for forming the magnetic material are also described.
Abstract:
An inductor may include a magnetic material that may include α″-Fe16(NxZ1-x)2 or α′-Fe8(NxZ1-x), or a mixture of at least one of α″-Fe16N2 or α′-Fe8N and at least one of α″-Fe16Z2 or α′-Fe8Z, where Z includes at least one of C, B, or O, and x is a number greater than zero and less than one. In some examples, the magnetic material may include a relatively high magnetic saturation, such as greater than about 200 emu/gram, greater than about 242 emu/gram, or greater than about 250 emu/gram. In addition, in some examples, the magnetic material may include a relatively low coercivity or magnetocrystalline anisotropy. Techniques for forming the inductor including the magnetic material are also described.
Abstract:
The design of biodegradable magnetic nanoparticles for use in in-vivo biomedical applications. The particles can include Fe in combination with one or more of Mg, Zn, Si, C, N, and P atoms or other particles. The nanoparticles can be degraded in-vivo after usage. The nanoparticles can cease heating upon reaching a predetermined temperature or other value.
Abstract:
A permanent magnet may include a Fe16N2 phase constitution. In some examples, the permanent magnet may be formed by a technique that includes straining an iron wire or sheet comprising at least one iron crystal in a direction substantially parallel to a crystal axis of the iron crystal; nitridizing the iron wire or sheet to form a nitridized iron wire or sheet; annealing the nitridized iron wire or sheet to form a Fe16N2 phase constitution in at least a portion of the nitridized iron wire or sheet; and pressing the nitridized iron wires and sheets to form bulk permanent magnet.
Abstract:
A bioassay system includes at least one conductive excitation coil, the at least one conductive excitation coil configured to generate an alternating magnetic field including a first frequency and a second frequency. The bioassay system further includes a sample mount configured to position a sample within the at least one conductive excitation coil, and at least one sensing conductive coil configured to determine a magnetic response of a sample positioned within the sample mount to the alternating magnetic field.
Abstract:
A magnetic device may include a layer stack. The layer stack may include a first ferromagnetic layer; a spacer layer on the first ferromagnetic layer; a second ferromagnetic layer on the spacer layer; and a dielectric barrier layer on the second ferromagnetic layer. In some examples, the layer stack may also include an additional ferromagnetic layer and an additional spacer layer. The magnetic device also may include a voltage source configured to apply a bias voltage across the layer stack to cause switching of a magnetic orientation of the second ferromagnetic layer without application of an external magnetic field.
Abstract:
A logic-memory cell includes a spin-orbit torque device having first, second and third terminals configured such that current between the second and third terminals is capable of changing a resistance between the first and second terminals. In the cell, a first transistor is connected between a logic connection line and the first terminal of the spin-orbit torque device and a second transistor is connected between the logic connection line and the third terminal of the spin-orbit torque device.